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Summary 

For an accurate prediction of the impact of flow induced vibration in nuclear power 
generation, computational methodologies are necessary that can simulate the interaction 
between fluids and structures. Within different components of the nuclear power 
generation system, interaction effects like turbulence induced vibration (mostly for axial 
flow cases) and flow/vortex induced vibration (mostly for cross flow cases) in single rod 
and rod-bundle configurations occur. Simulation of such cases using direct CFD-FEM 
coupling approaches with high fidelity models may provide an accurate prediction, but at 
a prohibitive computational cost.  

In this work package, fast-running methods are identified that improve computational 
speed for such cases by reducing computational complexity. Each of the methods 
described in this report aims to reduce the computational complexity by simplifying a 
specific part of the flow induced vibration problem. Two methods target in particular the 
effect of turbulence and turbulence pressure fluctuations: by introducing a synthetic 
turbulence model, the goal is to retrieve turbulence pressure fluctuations to similar 
accuracy as LES/DNS but at a much lower computational cost. Two levels of simplification 
are investigated: 1) considers the anisotropy of the Reynolds stresses and solves a Poisson 
equation to reconstruct pressure fluctuations from the synthetic turbulence velocity 
fluctuations, 2) uses an algebraic expression to correlate pressure fluctuations directly to 
the synthetic turbulence velocity fluctuations. Two other approaches use the 
decomposition of the structure dynamics into decoupled modes to: 1) simplify the fluid-
structure coupling by introducing a reduced order model of the structure directly into the 
CFD solver, and 2) building a linear fluid response model for a subset of modal deformation 
shapes to replace the CFD solver.  

The theoretical approach of these fast-running methods is documented, and some (initial) 
validation tests conducted. 

Keywords 

Synthetic turbulence, turbulence induced vibration, turbulence pressure fluctuation 
model, reduced order model, flow induced vibration, fluid-structure interaction  
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1. Anisotropic Pressure Fluctuation Model by NRG 
This chapter presents the fast-running FSI model under development by the Nuclear 
Research & consultancy Group (NRG), in collaboration with the Delft University of 
Technology (TUD). It presents details of the model, as well as first validation results, both 
for pure fluid-flow cases and an FSI case.   

1.1 Introduction  

In the fuel assemblies, the flow is in axial direction and the driving FIV mechanism is 
Turbulence-Induced Vibrations (TIV), as the vibrations of the fuel rods are driven by the 
local, small-scale, turbulent velocity and pressure fluctuations. These fluctuations can 
numerically be resolved by, for example, the use of Large-Eddy Simulations (LES) or Direct 
Numerical Simulations (DNS). The drawback of these simulations though is that they 
require a large amount of computational power and time, and hence cannot be applied to 
most industrial applications. Cheaper numerical tools, such as those based on the Unsteady 
Reynolds-Averaged Navier-Stokes (URANS), which are widely used in the industry, do not 
resolve the fluctuations causing the structural vibrations. 

To overcome this, the Nuclear Research & consultancy Group (NRG) in the Netherlands has 
been working on the development of the Pressure Fluctuation Model (PFM) [1], [2]. This 
model makes use of local average velocity and turbulence fields to create instantaneous 
velocity fluctuations. With these velocity fluctuations, the pressure fluctuations can be 
determined. These, in turn, are added to the averaged pressure and fed to the structural 
solver as boundary conditions. This combined URANS-PFM model has been tested in a 
selected number of FIV cases and from comparison to experimental data it was found that 
the PFM predicts vibration amplitudes in the same order of magnitude [2]. However, from 
the numerical tests it was also found that the PFM still has some shortcomings.  

To address these shortcomings, an improved pressure fluctuation model, called 
Anisotropic Pressure Fluctuation Model (AniPFM), has been created. The new model 
tackles several limiting assumptions of the PFM, such as that of isotropic turbulence and 
the method of time correlation used in PFM. With these extensions to the PFM, the AniPFM 
increases the accuracy in the prediction of vibration amplitudes through FIV-simulations of 
TIV. This chapter presents this new AniPFM. In the next Section, the new AniPFM is 
described in detail. Subsequently, in Section 1.3, the numerical framework, in which AniPFM 
is implemented and which is used to simulate flow-induced vibration problems is discussed. 
Subsequently, in Section 1.4 flow-only simulations with AniPFM are described, and results 
are compared with experimental and numerical reference date. In Section 1.5, a first FIV 
test case is presented, with results compared to available experimental data, and to other 
available numerical results. Finally, in Section 1.5, conclusions and future work are listed.    

1.2 Anisotropic Pressure Fluctuation Model 

In this chapter, the new AniPFM is discussed. The name is derived from the fact that this 
model is able to reproduce anisotropic Reynolds stresses. It is based on the formulation of 
the PFM as presented by Kottapalli et al. [2], though major modifications have been made 
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to incorporate anisotropy and accurate time correlation, using, amongst others, 
approaches from Billson et al. [3], and Shur et al. [4]. First, the generation of velocity 
fluctuations is discussed, including the separate components and steps needed to create 
them. After this, the generation of the pressure fluctuations is discussed. Finally, the 
numerical framework in which the AniPFM is implemented and which is used to simulate 
FIV problems is presented. 

1.2.1 Dimensionless velocity fluctuations 

The first step in generating velocity fluctuations that are a function of space and time and 
with which an anisotropic turbulent velocity field can be reconstructed is to construct 
dimensionless velocity fluctuations that are solely a function of space.  These 
dimensionless fluctuations 𝒘!(𝑥) are created by a Fourier decomposition as follows, 
similarly to what is done by Shur et al. [4]: 

𝒘!(𝑥) = √6>?𝑞"[𝝈"cos	(𝒌" ∙ 𝒙 + 𝜑")]
#

"

, (1) 

here, 𝑞" is the mode amplitude, 𝝈" is the direction vector, 𝒌" is the wavenumber vector, 
and 𝜑" is a random phase shift with a uniform distribution. The subscript 𝑛 denotes the n-
th Fourier mode, with in total N modes. 

1.2.1.1 Wavenumber range 

There are three important parts to create a proper Fourier decomposition of the 
dimensionless velocity fluctuations, viz. (a) the choice of the range and distribution of the 
N modes used, (b) the specification of the amplitude of each mode, which represents the 
energy contained in that mode, and (c) setting the direction of each mode. For the third 
part, it requires specifying a starting mode 𝑘$!%&!, corresponding to the first mode, and an 
end mode 𝑘'"(, which is mode N. The smallest wavenumber 𝑘$!%&! corresponds to the 
largest eddy length scale L in the domain, for which a conservative estimate can be found 
from the following equation: 

𝑘$!%&! =
𝜖

max(‖𝒖‖)
, (2) 

with 𝜖	the energy dissipation rate and 𝒖	the URANS velocity. Some other considerations 
must also be taken in account though in order to properly set 𝑘$!%&!. First, the starting 
wavenumber must be lower than the wavenumber with the maximum energy density 𝑘'. 
Furthermore, geometrical considerations must also be taken into account. For this, the 
user can input a user length scale 𝑙)$'&, which denotes the maximum length that can be 
captured given the geometry of the problem. For example, in turbulent channel flow the 
maximum wavelength in the wall-normal direction is equal to the channel height. Taken 
these considerations into account, the following expression is used for 𝑘$!%&!: 

𝑘$!%&! = max Wmin Z𝑘$!%&! ,
1
2 𝑘'[ ,

2𝜋
𝑙)$'&

] . (3) 
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As for 𝑘'"(, a cut-off wavenumber is used 

𝑘'"( =
3
2𝑘*)! ,

(4) 

with 𝑘*)! =
+,
-!"#

 and 𝑙*)! a user-defined cut-off length. Several expressions for this cut-off 

length were investigated, such as having it depend on the local cell size, as smaller waves 
would not be accurately resolved by the model. However, it was found that the cut-off 
length as defined by Shur et al. [4] gives the most accurate results: 

𝑙*)! = 2min`maxaℎ. , ℎ/ , 0.3ℎ0%1d + 0.1𝑑2 , ℎ0%1f , (5)	 

with ℎ. and ℎ/ local cell sizes in spanwise and wall normal direction, respectively, ℎ0%1  the 
maximum of the three local cell sizes, and 𝑑2  the distance to the wall. Given the 
wavenumber space from 𝑘$!%&! to 𝑘'"(, the space is divided in N intervals, with N +1 edge 
wavenumbers. These edge-wavenumbers are used to define ∆𝑘". The edge-wavenumbers 
are logarithmically distributed. 

1.2.1.2 Turbulent kinetic energy spectrum 

The mode amplitude 𝑞" specifies the amount of energy contained in that mode. Similarly 
to the old PFM, it is defined by a modified Von-Kármán energy spectrum 𝐸(𝑘). Though since 
for the AniPFM dimensionless velocity fluctuations are needed, the energy per mode is 
normalized in the following way: 

𝑞" =
𝐸3(𝑘")∆𝑘"

∑ 𝐸3(𝑘")∆𝑘"#
"

, (6) 

where 𝐸3(𝑘") is the modified Von-Kármán energy spectrum evaluated at 𝑘". This spectrum 
is given by the expression below: 

𝐸(𝐾) =
(𝑘 𝑘'⁄ )4

[1 + 2.4((𝑘 𝑘'⁄ )+)]56 7⁄ exp n−p12
𝑘
𝑘9
q
+

r𝑓*)! , (7) 

where 𝑘'  is the earlier mentioned wavenumber at which the energy spectrum has its 
maximum, and 𝑘9  is the Kolmogorov wavenumber. This spectrum is very similar to the one 
used in the old PFM, however, a big difference is that now the constant A found in the 
previously used expression for the spectrum is no longer necessary, as the value for 𝑞"	is 
scaled by normalization. Because of this, the integral used to determine this constant A 
does not have to be evaluated, which reduces the total computational time and the 
complexity of the model. 

The modified Von Kármán spectrum is multiplied by a cut-off filter 𝑓*)!. Without this cut-off 
filter, the spectrum continues until the Kolmogorov wavenumber. However, typically the 
mesh cannot resolve wavenumbers that far; otherwise, it would be more favorable to 
perform a DNS. Since the input spectrum would not be fully resolved, an aliasing effect can 
be found in the reconstruction of the energy spectrum. To counteract this, a cut-off filter 
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is used, which improves the reconstructed energy spectrum. The used expression in 
AniPFM for the cut-off filter is [4]: 

𝑓*)! = expn− u
4max(𝑘 − 0.9𝑘*)! , 0)

𝑘*)!
w
:

r , (8) 

with 𝑘*)! as given in Section 1.2.1.1. 

1.2.1.3 Direction vector 

The final part needed for a proper Fourier decomposition of the dimensionless velocity 
fluctuations is the specification of the wavenumber vector and its direction vector. For the 
former, AniPFM uses the same definition as previously used in the old PFM, see also Figure 
1: 

𝒌" = 𝑘"[sin 𝜃" cos𝜓" , sin 𝜃" sin𝜓" , cos 𝜃"	], (9) 

where 𝜃", 𝜓"	and 𝜑"are random ariables with distributions given by: 

𝑃(𝜓") =
1
𝜋 ,					𝑃

(𝜑") =
1
2𝜋 ,					𝑃

(𝜃") =
1
2 sin

(𝜃") . (10)											 

 

Figure 1. Wave vector geometry of the n-th Fourier mode [3]. 

The wavenumber direction vector is determined from the wavenumber vector. Based on 
continuity, it can be found that 𝒌" ∙ 𝝈"= 0. To achieve this, 𝝈" is defined as the normalised 
cross-product between a random vector 𝜻" , and the wavenumber vector: 

𝝈" =
𝜻" × 𝒌"
|𝜻" × 𝒌"|

. (11) 

Since the dot-product of a vector with the cross product of the same vector is always equal 
to zero, the continuity condition is met. 

1.2.2 Time correlation 

The second step in generating the desired space-time dependent velocity fluctuations is 
implementing proper time correlation in the dimensionless and purely space-dependent 



GO-VIKING 
Report Title  

15 
 

velocity fluctuations of Section 1.2.1. Two phenomena contribute to the time correlation of 
the velocity field, namely the convection of the turbulent eddies and the decorrelation due 
to the production and dissipation terms. To introduce this time dependency, a two-step 
method similar to Billson et al. [3] is used: 

𝜕𝒗!0<5

𝜕𝑡 + 𝑈=
𝜕𝒗!0<5

𝜕𝑥=
= 0. (12) 

𝒗!0(𝒙, 𝑡) = 𝑎𝒗!0<5(𝒙) + 𝑏𝒘!
0(𝒙). (13) 

Here, 𝒗!0<5 are the non-dimensional velocity fluctuations generated at time step m-1, and 
𝑈=  is the Reynolds-averaged velocity as produced by URANS. In the first step, i.e. Eq. (12), 
the dimensionless velocity fluctuations are convected with the URANS velocity. Then, in 
the second step, a new solution 𝒗!0(𝒙, 𝑡) is calculated from a combination of the 
(convected) previous solution 𝒗!0<5(𝒙), and a newly generated field 𝒘!

0(𝒙). The 
coefficients a and b are defined by: 

𝑎 = 𝑒<>$∆! @⁄ ,					𝑏 = 	?1 − 𝑎+, (14) 

with 𝜏 the dissipation timescale determined from the URANS simulation, and 𝑓𝜏 a 
modification factor for fine-tuning the correlation. In line with [3], a value of 𝑓𝜏 = 17 is 
initially used. Tests showed that this value gives a satisfactory correlation in the simulations 
of interest.  

1.2.3 Scaling 

The third and final step in generating velocity fluctuations is to scale the space-time 
dependent velocity fluctuations of Section 1.2.2 such that they replicate the desired 
Reynolds stresses and hence introduce the desired anisotropy. The final velocity 
fluctuations 𝒖!(𝒙, 𝑡)	are constructed from non-dimensional isotropic fluctuations 𝒗!(𝒙, 𝑡) 
through the following expression: 

𝒖!(𝒙, 𝑡) = 𝑎A=𝒗!(𝒙, 𝑡), (15) 

With 𝑎A=  the Cholesky decomposition of the Reynolds stress tensor R, given by: 

𝑎A= =

⎣
⎢
⎢
⎢
⎢
⎡?𝑅55 0 0
𝑅+5
𝑎55

�𝑅++ − 𝑎+5+ 0

𝑅:5
𝑎55

(𝑅:+ − 𝑎:5𝑎+5)
𝑎++

�𝑅:: − 𝑎:5+ − 𝑎:++ ⎦
⎥
⎥
⎥
⎥
⎤

. (16) 

For the Cholesky decomposition a, it follows that 𝑎B𝑎 = 𝑅. Thus, if 〈𝒗!(𝒙, 𝑡)+〉 = 	 𝛿A=, it 
follows that 〈𝒖!(𝒙, 𝑡)+〉 is the Reynolds stress tensor. From this it can be concluded that 
𝒗!(𝒙, 𝑡) must indeed be isotropic, and the squared-averaged components must be equal to 
unity. 
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With this method, the AniPFM can reconstruct anisotropic Reynolds stresses. For flows 
with a constant pressure gradient, such as channel flows, linear eddy viscosity models 
show isotropic Reynolds stresses. In order to improve the accuracy of these models, a 
correction is used to transform the isotropic tensor into an anisotropic tensor, based on 
the nonlinear eddy viscosity model of Wilcox [5]: 

𝑢C𝑢C������ =
8
9𝑘,					𝑣

C𝑣C������ =
4
9𝑘,						𝑤

C𝑤C������� =
6
9𝑘.

(17) 

1.2.4 Pressure fluctuations 

With the three steps outlined in the previous sections, the desired space-time dependent 
velocity fluctuations are created. The velocity fluctuations require as input the turbulent 
kinetic energy and the turbulent dissipation rate. These are obtained from URANS. As the 
AniPFM must model the pressure fluctuations, it is necessary to derive how they relate to 
the generated velocity fluctuations. This dependence is derived in a similar way as done for 
the previous PFM.  

First, in the incompressible momentum equation, the Reynolds decomposition of the 
velocity 𝒖 = 𝒖� + 𝒖′ and pressure 𝑝 = 	 𝑝̅ + 𝑝′ is substituted. Then, the averaged 
momentum equation is subtracted, and the divergence operator is applied. This results in 
the following Poisson equation for the pressure fluctuations:  

𝜕+𝑝C

𝜕𝑥A𝜕𝑥A
= −𝜌> u2

𝜕𝑢�A
𝜕𝑥=

𝜕𝑢C=
𝜕𝑥A

+
𝜕+

𝜕𝑥A𝜕𝑥=
a𝑢AC𝑢=′ − 𝑢DC𝑢E′������dw . (18) 

From this equation, it is evident that the pressure fluctuations only depend on the mean 
velocity 𝑢D�  and the Reynolds stresses 𝑢DC𝑢E′������, which can both be obtained from the URANS 
solution, and the modeled velocity fluctuations 𝑢AC. Hence, all necessary ingredients are in 
place to generate the desired pressure fluctuations and to perform FIV simulations using 
URANS in combination with the Anisotropic Pressure Fluctuation Model.  

1.2.5 Model overview 

The previous sections outlined the necessary steps needed to generate the velocity 
fluctuations, and with those as input, the desired pressure fluctuations. In Figure 2, the full 
model is summarized. First the non-dimensional velocity fluctuations are calculated, based 
on the energy spectrum. Then the time correlation is performed. After this, the velocity 
fluctuations are computed by scaling with the Cholesky tensor. Finally, 𝑝′ can be computed. 

1.3 Computational Framework 

AniPFM is implemented in the finite volume OpenFOAM framework, which is also used to 
solve for the governing fluid equations. The URANS equations are discretized in space with 
a PIMPLE algorithm which is a combination of the classical PISO and SIMPLE algorithms. 
The consistent second-order backward difference scheme (BDF2) developed for moving 
grids is used to integrate the equations in time. The mean pressure field resulting from the 
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URANS solver is superimposed with the pressure fluctuations field coming out of AniPFM 
and subsequently passed on to the solid solver as boundary conditions.  

The governing equations for the solid problem are solved by means of the finite element 
approach implemented in the library Deal.II [6]. In particular, the linear finite element 
approximation is used to discretize the governing equations in space, and the Theta-
method is used to integrate the structural equations in time. In all the cases reported in 
this work, the value θ = 0.6 is used for the time integration of the structural problem. 

The fluid and solid solvers are coupled through the preCICE library [7] for solving Fluid-
Structure Interaction (FSI) problems. Due to the fact that the fluid and solid meshes are 
generally not conforming at the fluid-structure interface, forces and displacements must 
be mapped from one grid to the other. To this purpose, radial basis functions implemented 
in preCICE are used to map the displacements from the solid to the fluid interface in a 
consistent way, and to map the forces from the fluid to the solid interface in a conservative 
way. 

A partitioned, parallel implicit coupling solver is used to solve the FSI problem. In implicit 
approaches, the flow and structural problems are solved iteratively until convergence of 
the FSI problem is satisfied within one time step. Here, convergence means that the 
equality of displacements and stresses is guaranteed up to a certain tolerance. For all 
simulations reported here, the interface quasi-Newton technique with an approximation 
for the inverse of the Jacobian from a least-squares model (IQN-ILS) of [8] is used as an 
acceleration technique for convergence. This method is proved to be more robust than 
Aitken’s under-relaxation methods for strongly coupled problems. 
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Figure 2: A flow-chart of the different computational steps of the proposed AniPFM. 

1.4 AniPFM Fluid-Only Validation 

Two fluid-only cases were simulated, in order to validate the AniPFM in terms of velocity 
and pressure fluctuation statistics. First, a Homogeneous Isotropic Turbulent (HIT) box was 
simulated, which was used to verify the AniPFM in isotropic conditions, since an isotropic 
energy spectrum was used as input. Second, a Turbulent Channel Flow (TCF) was 
simulated, with the purpose of testing the accuracy of the AniPFM versus the PFM in 
anisotropic turbulence. The setup of these two cases is discussed in this section. The 
AniPFM is implemented in OpenFOAM 8, and thus all subsequent simulations have been 
performed with the same software. 

1.4.1 Homogeneous isotropic turbulent box 

For the HIT validation case, two different simulations will be done. One replicating the 
experiment of Comte-Bellot & Corrsin [9], and one replicating the DNS of Gotoh et al. [10]. 
First, the methodology for both cases is discussed. After this, the results for both cases are 
elaborated upon. Both cases have slightly different purposes. First, the Comte-Bellot & 
Corrsin experiment gives data of the three-dimensional energy spectrum, as well as data 
on the time-correlation of the axial velocity. The energy spectrum data will be used to verify 
that the PFM indeed can replicate an isotropic energy spectrum. Next to this, the ability of 
the AniPFM to replicate the actual time correlation is tested. Several parameters of the 
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AniPFM will be varied such that the influence of these parameters can be evaluated. The 
DNS of Gotoh et al. contains data of the nondimensional energy and pressure spectrum for 
several Reynolds numbers Reλ, where λ is the Taylor microscale. This data will be used to 
validate the implementation of the calculations of the pressure fluctuations for several 
Reynolds numbers. 

1.4.1.1 Simulation Setup 

A box of 𝐿 × 𝐿 × 𝐿 is created, which is discretized by a cartesian mesh of 𝑁 × 𝑁 × 𝑁 cells. 
All boundaries are periodic, and the domain has a zero-mean velocity. There are no source 
terms, thus the turbulence in the box will decay over time. In Table 1, the details of the 
replicated set-up of the experiment of Comte-Bellot and Corrsin and the DNS of Gotoh and 
Fukayama are shown. The latter was specified in dimensionless numbers. For validation of 
AniPFM, the simulation with 𝑅𝑒F = 284 of Gotoh and Fukayama is replicated. 

Table 1: Details of the simulation replicating Comte- Bellot and Corrsin and Gotoh and 
Fukayama at 𝑹𝒆𝝀 = 𝟐𝟖𝟒 

 Comte-Bellot and Corrsin [9] Gotoh and Fukayama [10] 

Turbulence model 𝑘 − 𝜀 𝑘 − 𝜀 

Initial k [m2/s2] 0.4740 0.012568 

Initial ε [m2/s3] 0.07393 0.01377 

Initial U [m/s] 0 0 

Initial p [Pa] 0 0 

ν [m2/s] 1.5e-5 1.5e-5 

Time step [s] 0.001 0.001 

Duration [s] 0.874 0.001 

 

1.4.1.2 Results 

In Figure 3, the simulated velocity fluctuations of the HIT box of Comte-Bellot Corrsin are 
shown, with a mesh size of N = 128. The velocity fluctuations on the left are from the 
AniPFM, whereas the results on the right are simulated through means of a Large-Eddy 
Simulation [11]. From Figure 5, it was concluded that the AniPFM can qualitatively 
reconstruct similar flow structures as high-resolution methods. 
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Figure 3: The instantaneous velocity fluctuations of the AniPFM, compared to LES 
results. 

In Figure 4, the energy spectra generated by both the AniPFM and the PFM of Kottapalli et 
al. [1] are compared to the experimental spectrum of Comte-Bellot & Corrsin. The AniPFM 
results show a very good resemblance with respect to the experimental results, right up to 
the cut-off wavenumber. Compared to the results of the PFM, the peak of the energy 
spectrum is better predicted, and there is no unphysical accumulation of energy near the 
cut-off wavenumber. The latter difference is due to the fact that a cut-off filter is used in 
the AniPFM, which makes sure that the unresolved energy is not redistributed over the 
resolved part of the spectrum.  

 

Figure 4: The energy spectrum of the new AniPFM (left) and the old PFM (right), 
compared to the experimental values of Comte-Bellot and Corrsin [9]. 

 

The time correlation of the velocity and pressure fluctuations is of great importance for the 
application to FSI simulations of nuclear fuel rods. This is because the pressure fluctuations 
that have a frequency close to the eigenfrequency of the fuel rod are expected to have the 
largest influence on the excitation of the fuel rods. Thus, it is important to model the 
distribution of the pressure fluctuations over the frequency domain correctly. For this 
reason, the time correlation is investigated. From the experiment of Comte-Bellot & 
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Corrsin, the correlation of the velocity fluctuations in the x-direction are known, these are 
compared to the time correlation of the velocity fluctuations of the PFM and the AniPFM. 

As can be seen in Figure 5, the PFM shows a much faster decorrelation than the experiment 
by Comte-Bellot & Corrsin, and the AniPFM. This is due to the fact that the PFM uses a 
convection velocity not based on the mean velocity, but rather on the wavenumber and 
the dissipation rate. Because of this, the convection velocity for each mode is not directly 
dependent on the mean velocity. As can be seen, this can lead to a fast decorrelation in the 
velocity fluctuations. Regarding the AniPFM, a much better approximation is shown, which 
a maximum error of 11.8%. This verifies that using an exponential relation for the correlation 
is an improvement over the previous method, for isotropic turbulence. 

 

Figure 5: Comparison of the velocity time correlation between the PFM, AniPFM, and 
the experimental data from Comte-Bellot & Corrsin [9]. 

The variable that is passed from the AniPFM to the structural solver is p′, so it is of utmost 
importance that it is verified that this can be replicated correctly. For this reason, the 
pressure spectrum is evaluated, and compared to both the results of the previous PFM, 
and to DNS results of Gotoh et al. [10]. The results for both the old PFM and the new 
AniPFM are shown in Figure 6. As can be seen, both models show a similar result w.r.t. the 
DNS data from Gotoh et al. The old PFM shows a small underprediction, while the AniPFM 
shows a slight overprediction.  
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Figure 6: The reproduction of the pressure spectrum of PFM (left) and AniPFM (right), 
versus the spectrum from Gotoh et al. [Figure 6]. 

 

1.4.2 Turbulent Channel Flow 

In this section, the simulations of a turbulent channel flow are discussed. The results of the 
TCF are compared to the DNS results of Abe et al. [12], who performed a DNS simulation at 
several Reynolds numbers. The highest Reynolds number was equal to 𝑅𝑒@ = 640, thus this 
Reynolds number is used for comparison. The DNS of Abe et al. was chosen, as from this 
simulation, information was available about the mean flow characteristics along the wall-
normal direction, such as the mean velocity and Reynolds stresses. It also contained 
spectral data about the pressure and velocity components, both near the wall and closer 
to the bulk of the flow. 

The TCF case is used to verify several aspects of the AniPFM. Errors in the prediction of the 
pressure fluctuations can be introduced from several sources, here the effect of each 
source is discussed. The different sources of errors are the modelling error, the 
discretization error, and finally the input error. Furthermore, due to the fact that random 
numbers are used to construct the wavenumber and direction vector, an uncertainty in the 
results is introduced. It was also observed that the RMS pressure fluctuations changed 
slightly over time, introducing another uncertainty. After assessing these errors and 
uncertainties, the modelling choices are further investigated by evaluating the effects of 
certain individual model choices. 

1.4.2.1 Simulation Setup 

In TCF, the flow between two infinitely long and wide stationary plates is simulated. The 
simulation domain used is equal to 6𝛿 × 2𝛿 × 3𝛿, where 𝛿 is the mid-channel height, see 
Figure 7 left. The mesh has a size of 𝑁1 × 𝑁. × 𝑁/ cells, which are kept as variables. The 
mesh distribution is uniform in the stream- and spanwise-direction, and it is geometrically 
expanding to the mid-channel plane in the wall-normal direction. The mesh in the wall-
normal direction is configured such that 𝑦H ≈ 1 for the first grid cell from the wall. An 
example mesh is shown in the right of Figure 7. Simulations were performed with the 𝑘 −



GO-VIKING 
Report Title  

23 
 

𝜔	𝑆𝑆𝑇	turbulence model, along with the Wilcox correction. However, for several 
simulations, no URANS calculation was done, but rather the mean flow properties of the 
DNS of Abe et al. were used as an input to the AniPFM. This was used to isolate any errors 
that originate due to the AniPFM, and not due to the input. 

 

Figure 7: Domain (left) and example mesh (right) used for the TCF simulations. 

1.4.2.2 Results 

While quantitative results such as root-mean-squared values and pressure spectra are 
absolutely necessary for evaluating the effectiveness of the AniPFM, qualitative results are 
as important. Without qualitative results, statistics such as mean or mean-squared values 
can sometimes be misleading. For this reason, the Root-Mean Square (RMS) pressure and 
velocity fluctuations are shown in Figure 8. It can be seen that mainly at the top wall the 
RMS pressure fluctuations have a large magnitude, in the mid of the channel the 
fluctuations are much closer to zero. This is due to the fact that the highest velocity and 
Reynolds stress gradients are near the wall. For the RMS velocity fluctuations, it is clear 
that near the wall, the magnitudes are larger than in the midchannel, but at the wall they 
are exactly zero. This is due to the no-slip condition. Also, the RMS values are almost 
constant over the span and streamwise direction, with only small variations in these 
directions. This was as expected, as the channel flow case is supposed to be homogeneous 
in these directions. Since this is also the case for the AniPFM results, it is justified to collapse 
this data to a single profile as function of the wall-normal direction, which is done for the 
subsequent results. 

 

Figure 8: The mean squared pressure and velocity fluctuations, taken fromAniPFM. 

For the turbulent channel flow, there are several sources of errors that cause a discrepancy 
between the AniPFM results and experimental/DNS data. Therefore, it is important that 
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each source is carefully evaluated. There exists an uncertainty range in the results of the 
AniPFM, which is due to the random numbers that are used throughout the simulation. For 
the chosen temporal correlation scheme, the random numbers gave an uncertainty range 
of 0.±25% for 𝑝IJKC , for a confidence interval of 95.4%. The number of modes did not seem 
to have a large effect on 𝑝IJKC , however, with a lower number of modes, the uncertainty 
went up, as fewer random numbers were used per iteration. For the presented simulations, 
1024 wave number modes were used. 

The amount of energy that is resolved by the AniPFM depends on the fineness of the mesh. 
There is no sub-grid model that models the effect of unresolved velocity fluctuations on 
the pressure fluctuations. Thus, the statistics of the pressure fluctuations only converge if 
a large part of the velocity fluctuations is resolved. Since 𝑝IJKC  is the quantity of interest, 
this quantity is evaluated for several meshes. This is shown in Figure 9, in which the results 
were obtained using the 𝑘 − 𝜔	𝑆𝑆𝑇 turbulence model, together with the Wilcox 
correction. It can be seen that the meshes converge to a final solution when using finer 
meshes. At the second finest mesh, the results near the wall are within the given 
uncertainty range, thus deeming the solution converged. 

 

Figure 9: The root-mean-squared pressure fluctuations along the wall-normal coordinate 
for various meshes, versus the DNS results of Abe et al. [12]. 

The modelling error was found by performing a simulation of the turbulent channel flow 
on the finest mesh from Figure 9, but with the RANS input variables (𝑘, 𝜀, 𝑢D� , 𝑢DC𝑢EC������) taken 
from DNS data. The replicated Reynolds stresses and 𝑝IJKC  are shown in Figure 10 left. The 
Reynolds stresses are very closely approximated. The small under-estimation is because 
the velocity fluctuations are not fully resolved. Nevertheless, it was found that these 
unresolved fluctuations had no effect on 𝑝IJKC . From Figure 10 (right), it can be seen that 
near the midchannel plane, the AniPFM very closely approximates 𝑝IJKC . This is because 
here the isotropic energy spectrum very closely approximates the actual energy spectrum. 
Near the wall, the energy spectrum is not approximated as accurately, due to the larger 
anisotropy in the flow. Thus, a larger discrepancy in 𝑝IJKC  was found near the wall, with a 
maximum error of 4.4%. 
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Figure 10: The Reynolds stress profiles (left) and the RMS pressure fluctuations (right) 
along the wall-normal coordinate, versus the DNS results of Abe et al. [12]. DNS data is 

used as input. 

1.5 FSI validation case 

In the previous chapter, results of two fluid-only test cases that were performed to assess 
the performance of the AniPFM were presented. These two test cases were that of a 
homogeneous isotropic turbulent box, and of a turbulent channel flow. Velocity and 
pressure fluctuations statistics were compared to experimental data, and an improvement 
compared to the old PFM was found. A next step is to assess the performance of AniPFM 
in a test case involving FIV. To this end, the flexible brass beam experiment in turbulent 
water flow, performed by Chen & Wambsganss was selected [13]. This experiment was 
chosen because it closely mimics turbulence-induced vibrations found in nuclear reactors, 
and because it has been used in the past by others as a validation case for FSI problems 
with applications to nuclear fuel rods [2], [14], [15] .  

The current chapter first gives a short description of the experiment, followed by the 
simulation setup used to perform the numerical calculations. Subsequently, results are 
presented, first of some pure AniPFM simulations, followed by AniPFM FSI simulations.  

1.5.1 Experiment 

The experiment consists of a flexible brass beam enclosed in a rigid steel cylinder, and that 
it is clamped on both sides. The discretized geometry as used by Kottapalli et al. [2] is 
shown in Figure 11. The diameter of the brass beam is Dc = 0.0127 m, the enclosing cylinder 
has a diameter of Do = 0.0254 m, and the beam has a length of L = 1.19 m. This gives an L/D-
ratio of 93.7. The level of turbulent intensity and the turbulent length scale at the inlet of 
the domain were not reported by [13]. Several studies [2, 14, 15] assumed a turbulence 
intensity of 5% and a turbulent length scale of 0.1 cm. The experiment was conducted for 
various mean inlet velocities, in the range of 8-33 m/s. This gives a range of Reynolds 
numbers from 101,600 - 419,100. The rod has a density of 8400 kg/m3, giving a density ratio 
of 𝜌$ 𝜌-⁄ = 8.4. The experimental Poisson ratio was not reported, but a nominal value of 
0.33 was taken, based on previous simulations [2]. Finally, a Young’s modulus of E = 107 
GPa was specified. The experiment established both data about the modal frequencies for 
several flow cases, and the root-mean-squared vibration amplitudes. 
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Figure 11: Discretized geometry of Kottapalli et al. [2], representing the experiment of 
Chen &Wambsganss [13]. 

 

1.5.2 Simulation setup 

The configuration is set up such that the geometry mimics the experiment. For the 
simulations, a uniform inlet velocity is used, along with a turbulence intensity of 5% and a 
turbulent length scale of 0.1 cm. From preliminary tests, it was determined that these 
values do not have a large effect on the results. The flow is fully developed for the majority 
(roughly 90%) of the domain, and in this part, the kinetic energy profiles and pressure 
fluctuations are independent of the inlet conditions. Only near the inlet is a variation 
noticeable; however, the impact of this region on the structural vibration is hypothesized 
to be considerably less than that of the developed flow region of the domain. 

The outer steel cylinder is kept rigid, whereas the inner brass beam is modelled as a moving 
wall. The brass beam is clamped at both ends, and it is assumed that the beam can be 
modelled with a linear elastic solver. For this, the relative displacements must be 
𝐴&0$ 𝐿⁄ 	≪ 1, which can be found to be true based on the displacement values from the 
experiment. For the CFD side, URANS is used with the k − ω SST model.  

The simulations are resolved up to the wall, which means that fine grids are necessary. An 
example of a mesh is shown in Figure 12, along with the used axis convention. Several fluid 
meshes are used to compare the results to the experiment and the simulations from 
previous papers. In these meshes, the axial and radial elements are varied to study its 
effects. The discretization in the tangential direction is fixed to 40 cells, which was found 
to be sufficient from a preliminary mesh study of pure CFD calculations. For the structural 
mesh, quadratic elements are used. From a preliminary mesh study, it was found that the 
results were converged for a structural mesh that has 25 elements in the x-y plane, and 50 
elements in the axial direction. For both the solid and the fluid models, a second-order time 
scheme is used. 
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Figure 12: Discretized geometry of the brass beam case. 

1.5.3 URANS FSI simulation 

Before performing the AniPFM FSI simulation, a free vibration with flowing water URANS-
only (without AniPFM) FSI simulation is performed for an inlet velocity of 10 m/s. This 
calculation serves as validation of the set-up, i.e., of the mapping method, the structural 
mesh and boundary conditions, and the coupling algorithm, are correct. For this 
calculation, the brass beam is subjected to an external load in a form of an initial distributed 
force for 0.015 s. This is the excitation mechanism, because with a pure URANS-approach, 
only the mean flow is resolved, without any pressure fluctuations responsible for inducing 
the vibrations.   

The behaviour of an oscillating beam is known, and it can be represented with an 
exponentially damped sinusoid. In order to retrieve the natural frequency and the damping 
ratio, the displacements obtained from the FSI simulation are fitted to the function: 

𝐷(𝑡) = 𝐴 ∙ 𝑒<F! ∙ cos(𝜔𝑡 − 𝜑) + 𝜓 . (19) 

From this expression, the natural frequency f and damping ratio ζ can be obtained through: 

𝑓 =
2𝜋
𝜔 ,											𝜁 =

𝜆
√𝜆+ + 𝜔+

. (20) 

The displacement of the centre of the brass beam at z = 0.595 m is shown in Figure 13. As 
can be seen, it indeed follows the exponentially damped sinusoid shape. The function 
shows to be an excellent fit, with the largest relative standard deviation of any fitting 
parameter being 0.044%. 
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Figure 13: The displacement at mid-beam, for 0.5 s of simulated time. 

In Figure 14, the fundamental natural frequency (left) and damping ratio (right) is 
compared with the experiment of Chen & Wambsganss [13], as well as other simulations 
taken from literature [2, 14, 15]. Note that from [14], the non-pre-stressed data is taken, in 
order to ensure a fair comparison. Furthermore, the experimental data from [13] is denoted 
by the green dots, whereas the line shows the theoretical results.  

 

Figure 14: The calculated frequencies (left) and damping ratios (right) of the current 
work, compared to various simulations as well as experimental results [2, 13-15]. 

As can be seen from Figure 14, the frequency is in close agreement with the experiments 
and the other simulations. There is an error of 5.7% w.r.t. the analytical value, and an error 
of 5.4% w.r.t. the closest experimental value. The results are comparable to other published 
results. As for the damping ratio, it was found that the results are similar to those of 
Kottapalli et al. [2], but it shows a large error of 28.6 % with respect to the experiment of 
Chen & Wambsganss. It is believed that this is caused by the software packages used for 
the FIV simulations, as in other cases in which OpenFOAM – preCICE – Deal.II framework 
was used, also an overestimation in damping ratio compared with simulations done in 
STAR-CCM+ was found [16].  
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1.5.4 AniPFM FSI simulation 

From the previous results, it was found that the general FSI set-up is in line with previously 
published results and thus that the model setup can be used for FSI simulations involving 
AniPFM. In this section, the Root-Mean Square (RMS) amplitudes obtained using the 
AniPFM FSI simulation are compared to those of the experiment by Chen & Wambsganss 
[13], in order to investigate the accuracy of the AniPFM. Simulations were performed at 10, 
15, and 20 m/s. Note that not the same mesh is used in each simulation, but an equivalent 
mesh such that y+ = 1 for all simulations. The maximum number of cells used in the 
simulations remains below the 1M though.  

The results for the various flow velocities are shown in Figure 15. Here, again the dots 
indicate the experimental values of Chen & Wambsganss [13], whereas the line indicates 
the values calculated by their analytical model. The error bars again note the 95% 
confidence interval over the last 20 flow-through times. The results of the simulations using 
different initial seed numbers for generating random numbers are shown at 10 m/s. 
Although the effect of different seed numbers was not tested for higher velocities, the 
results at 10 m/s should give an indication of the uncertainty that higher flow velocities 
would experience as well. Note that the results of Nazari et al. [15] are not included, as they 
are one order of magnitude larger than all other data points. 

 

Figure 15: The RMS vibration amplitudes of the brass beam of the current work, 
compared to various simulations as well as experimental results [2, 13, 14]. 

The AniPFM shows a clear overestimation of the RMS amplitude, whereas the results of 
Kottapalli et al. [2] and De Ridder et al. [14] show an underestimation. Note that the 
simulation performed by De Ridder is a pure LES simulation, not an FSI simulation. The RMS 
amplitude was obtained using the force frequency spectrum as input of the theoretical 
model of Chen & Wambsganss [13]. The results of Kottapalli et al. [2] are obtained with a 
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URANS FSI methodology combined with a pressure fluctuation model, similar to the 
method presented in this paper.  

Looking at relative errors, AniPFM over-predicts the RMS displacement by about 30-40 %, 
which is similar in magnitude to that of De Ridder et al. [14]. The relative error obtained by 
PFM is much larger though. Hence, from these first FIV simulations using AniPFM, it can be 
concluded that the use of the proposed AniPFM has shown an improvement in the 
prediction of the root mean-squared amplitude, compared to the previous pressure 
fluctuation model proposed by Kottapalli et al. [2]. Although the AniPFM showed a similar 
error w.r.t. the RMS amplitude as the large-eddy simulation of De Ridder et al. at 10 m/s, 
due to lack of data at other mean flow velocities, no conclusions can be made about the 
general accuracy of the AniPFM versus large-eddy simulations. Applying AniPFM to further 
test cases should give a more detailed indication of the performance of AniPFM compared 
to other available numerical tools and methods for simulating turbulence-induced 
vibrations.  

1.6 Conclusions and future work 

In this Chapter, a new pressure fluctuation model, called AniPFM is described. This model 
allows for the prediction of pressure fluctuations when using a URANS approach, which 
can be useful in particular for turbulence-induced vibration prediction. Several aspects of 
the AniPFM were adjusted with respect to the previous PFM of Kottapalli et al., namely the 
energy spectrum cut-off filter, the replication of anisotropic Reynolds stresses, and the 
method for time correlation. 

After presenting the model and used computational framework, AniPFM was validated for 
pure flow-only cases, comparing velocity and pressure fluctuations statistics with available 
experimental data. This was done for both a Homogeneous Isotropic Box and a Turbulence 
Channel flow. With satisfactory results found when comparing with reference 
experimental and numerical data, attention was switched to a first application to an FIV 
test case. The test case under consideration is that of a flexible brass beam in turbulent 
water, as performed by Chen & Wambsganss in 1975. Results for URANS FSI simulations 
showed a good match for the natural frequency with the experimental one, though an 
over-prediction in the damping ratio. This latter is in line with what was observed previously 
with the numerical framework used. Next, results for FSI simulations involving AniPFM 
were compared with experimental data and other numerical results. Differences in RMS 
amplitudes of about 30-40% were found, which is a significant improvement from the 
previous PFM.  

Future work will be aimed at testing AniPFM on other test cases. Moreover, further 
development of the model is foreseen, such as the testing the sensitivity of the model on 
some of the model parameters.   
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2. Implementation of the ANSYS Model Order 
Reduction for fast-running FSI simulations 

Large cost reduction in a FSI simulation in terms of computational time can be achieved 
with reduced-order models for the fluid domain. This results from the fact that in a FSI 
simulation the CFD part is significantly more expensive than the structural one. Therefore, 
almost all fast-running models in GO-VIKING’s WP5 are focused on the development and 
implementation of fluid-based ROMs. It is still worth investigating the savings in 
computational time when the model reduction is based on the structural part of the 
computational domain. This chapter first shortly introduces the Model order Reduction 
(MOR) approach, developed by ANSYS [17], then provides information on how to 
implement this and finally shows comparative results between reduced- and full-order 
model for a simplified test case.   

2.1 Introduction to ANSYS MOR  

2.1.1 The Method of Superposition  

The Method of Superposition is a linear system method stating that in a linear system, the 
net response at each point of interest is the sum of the responses from each individual 
input acting alone. In structural mechanics, the Method of Superposition is utilized to solve 
static problems by dividing them into simpler parts. Each of the parts is then individually 
solved, by considering a single load at one time only. The individual solutions are then 
combined (superimposed) in one final solution that takes into account the overall effect of 
the original load. 

For linearly elastic structures, the load 𝑃 and the deformation 𝛿	are related through the 
stiffness 𝐾, as shown in Figure 16: 

 

Figure 16: A typical load-deformation diagram of linear materials 
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For the first load applied on the structure:  

𝑃5 = 𝐾𝛿5 (21) 

 

If 𝛥𝑃 had been applied instead, then:  

𝛥𝑃 = 𝐾𝛥𝛿 (22) 

To obtain the total load applied on the structure as well as its deformation, both equations 
should be added: 

𝑃5 + 	𝛥𝑃 = 𝐾𝛿5 + 	𝐾𝛥𝛿 = 𝐾(𝛿5 + 𝛥𝛿) (23) 

 

Then the following equations can be derived from the diagram in Figure 16: 

𝑃5 = 𝑃+ + 	𝛥𝑃, 																𝛿+ = 	𝛿5 + 𝛥𝛿 

 

The expected and obvious result is: 

𝑃+ = 𝐾𝛿+ (24) 

 

All this leads to the following conclusions: 

- Deformation caused by a load can be added to the deformation caused by another 
load in order to obtain the resulting deformation from the application of both loads 
on the structure. 
 

- The order in which the loads are applied on the structure does not play a role. 
 

- It is possible to add or subtract loads that act on a structure.  
 

These conclusions hold as long as the material behavior is linear, e.g. the structure is linearly 
elastic. In cases with plastic deformations the Method of Superposition cannot be applied. 
Plastic deformation is the ability of a solid material to undergo permanent deformation, 
which is a non-reversible shape change as a result of the applied loads. Further, this method 
is valid as long as the structures undergo small deformations.   

2.1.2 ANSYS MOR  

The ANSYS MOR approach was developed by ANSYS with the objective to describe the 
static or dynamic responses of the mechanical system in a fast and accurate way [17]. 
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ANSYS MOR was coupled to the CFD program ANSYS CFX. It is based on the mode-
superposition method, which uses the natural frequencies and mode shapes generated 
from a modal analysis to characterize the dynamic response of a structure to transient or 
steady harmonic excitations [18]. With this method, the dynamic response of a structure 
can be approximated by a superposition of a particular number of its eigenmodes.  

First, the general equations of motion are expressed as:  

[M]{𝑢̈} + C{𝑢̇} + [K]{u} = {𝐹}  (25) 

where [M] is the structural mass matrix, [C] the structural damping matrix, [K] the 
structural stiffness matrix, {𝑢̈} the nodal acceleration vector, {𝑢̇} the nodal velocity vector, 
{𝑢} the nodal displacement vector and {𝐹} the time-varying load vector. The time-varying 
load vector is defined as:  

{𝐹} = {𝐹"(} + s{𝐹$}   (26) 

where {𝐹"(} represents the time-varying nodal forces, {𝐹$} - the load vector, computed 
with a modal analysis; and s - the load vector scale factor. The nodal force 𝐹A  can be 
expressed as:  

𝐹A =	∫𝛷AB 𝑛°⃗ 𝑝A𝑑𝑎   (27) 

where 𝛷AB is a typical mode shape, 𝑛°⃗  is the normal vector and 𝑝A  is the pressure of ith node. 
The nodal displacement vector can be defined with a set of modal coordinates 𝑦A  as:  

{𝑢} = ∑ {𝛷A}"
AL5 𝑦A    (28) 

where {𝛷A} is the ith mode shape, and n is the number of modes to be considered.  

After several substitutions and further mathematical operations, the equation of motion 
of the modal coordinates is obtained:  

𝑦D̈ + 2𝜔A𝜉A𝑦̇A + 𝜔A+𝑦A = 𝑓A   (29) 

where 𝜉A  is the fraction of critical damping for mode i and 𝜔A  is its angular frequency. 

Since i represents any mode, Eq. (29) denotes n uncoupled equations in the n unknowns 
𝑦A. The advantage of the uncoupled system is that all the computationally expensive matrix 
algebra has been done in the eigensolver, and long transients may be analyzed 
inexpensively in modal coordinates with Eq. (28). The 𝑦A  are converted back into geometric 
displacements (the system response to the loading) by using Eq. (28). That is, the individual 
modal responses are superimposed to obtain the actual response, and hence the name 
“mode-superposition” [18]. 

Equation (5) represents a reduced mechanical system and is implemented in 
ANSYS CFX - MOR code. Since it is a simplification of the mechanical system it is important 
to remember that FSI simulations with ANSYS CFX - MOR are subject to some restrictions. 
The approach is valid for cases with linear dynamics and this implies moderate 
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displacements, small strains, linear contacts and linear material behavior (no plasticity) 
[17]. 

 

2.2 Implementation of ANSYS CFX-MOR for a simplified test case  

A simple test case was generated with the aim to implement the ANSYS MOR approach 
and compare it with the a full-order model (FOM), which is the coupled code ANSYS CFX – 
Mechanical.  

2.2.1 Case setup 

In the proposed test case, water at 25 °C flows across one cylinder in a narrow rectangular 
flow channel. As a result of the occurring vortex shedding phenomena, the cylinder starts 
to vibrate. Figure 17 shows the geometry of the case setup. The channel is 200 mm high, 
30 mm wide and 70 mm long. The cylinder is 198 mm high and has a diameter of 7 mm. In 
the upper part of the cylinder monitor points are put to track its displacement in two (lift 
and drag) directions. The cylinder is firmly fixed in the bottom plate, while its top end is 
free: the latter is just 2 mm below the top channel wall and the cylinder wall about 10 mm 
away from the channel side walls.  

 

Figure 17: Narrow rectangular channel with cylinder inside exposed to a cross-flow. 
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2.2.2 Generation of the mechanical model and modal analysis 

The geometry of the cylinder was imported in Mechanical. A tetrahedral mesh, consisting 
of approx. 0.2 M elements in total was generated. Figure 18 shows the numerical mesh of 
the first cylinder. DISPLACEMENT boundary conditions were used for the bottom end of the 
cylinder. This is not allowed to move, while no extra boundary conditions were applied at 
its top end, since this should freely move and experience the largest displacements, 
resulting from the vortex-shedding phenomenon. The material properties, provided by 
CEA for the AMOVI experiment, were used in this theoretical test case: the density of 
stainless tube is 8300 kg/m3, the elasticity is 200 GPa and the Poisson ratio is 0.3.  

With this configuration, a modal analysis was performed to calculate the eigenfrequency 
of the structure. The calculated first fundamental frequency of the cylinder is 113 Hz. For 
the validation of FSI simulations with ANSYS MOR the good agreement between simulation 
and measured experiment for the fundamental vibration frequency is of great importance. 
One should not expect to generate accurate results with the reduced order model if the 
first fundamental vibration frequency is not matching well the measured value.  

It was decided to perform the modal analysis for the first six modes of vibration. In this 
particular case, the first vibration mode plays the most important role. Table 2 presents the 
calculated eigenfrequencies for the first six modes. Figure 19 shows the cylinder mode 
shapes for the first six vibration modes. 

 

 

Figure 18: Tetrahedral mesh of the cylinder, generated in Mechanical 

 

Table 2: Fundamental vibration frequencies of the cylinder  

Mode Frequency, [Hz]  
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First 113.01  

Second 113.02 

Third 856.19 

Fourth 856.31 

Fifth 2524.6 

Sixth 2524.9 

 

 

Figure 19: Cylinder mode shapes for the first six vibration modes.  

 

2.2.3 Generation of the ANSYS CFX model and setup 

The CFD domain comprises the channel and the outer surface of the cylinder. To carry out 
the analyses, a hexahedral grid was generated. Mesh studies were not performed, since 
the same mesh was used for the reduced-order and full-order model computations. 
Nevertheless, the generated grid was relatively fine and with very high quality, because the 
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Zonal LES (ZLES) was used. The maximal aspect ratio is 33, the expansion factor is 12 and 
the minimum orthogonality angle (important for the solver convergence), is significantly 
larger (42°) than the recommended minimum value of 20° in the OECD/NEA Best Practice 
Guidelines for the Use of CFD in Nuclear Reactor Safety Applications [19]. The final 
computational mesh, used for the ANSYS CFX-Mechanical simulations, consisted of 3 
million elements (Figure 20). The mesh structure was also created according to the ZLES 
turbulence model requirements in ICEM CFD: the mesh around the cylinder (LES zone) is 
fine, while in the URANS region a coarser mesh was used. The flow simulations were carried 
out with a “High-Resolution” advection scheme, the time discretization was carried out 
with a second-order scheme.  

The CFD simulations are isothermal since all experiments were performed at a constant 
temperature of 25 °C. At the channel inlet a mass flow rate of 2.78 kg/s was specified along 
with medium turbulence intensity. At the outlet, constant pressure was applied. The 
chosen time step size of 2.2 × 10−4 s resulted in a CFL ∼0.53. The convergence criteria for 
the CFD solver were set to RMS <10−5. 

Two simulations were performed: a full-order model (FOM) and a reduced-order model 
(MOR). Both simulations had the same fluid domains. The structural models used for the 
FOM and the modal analysis were based on the same mesh and boundary conditions. The 
FOM calculation was performed with the System Coupling (SYSC) service, which is part of 
ANSYS tools. In the FOM calculation, 3 staggered iterations per time step were carried out, 
this means that ANSYS CFX and Mechanical exchanged results three times within each time 
step. This number proved to be sufficient for the convergence of the FSI run. In the MOR 
simulation, data exchange takes place at the end of the time step. 

 

Figure 20: Hexahedral mesh representing the flow channel. 

2.2.4 Generation and implementation of the MOR model in ANSYS CFX 
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As already mentioned before, a modal analysis with 6 modes was performed with the 
cylinder to obtain the fundamental vibration mode shapes and frequencies. Six files were 
generated, and these were used as an input for the MOR approach in the ANSYS CFX-MOR 
calculation. These files contain the fundamental frequency for each vibration mode 
together with the initial X, Y, Z coordinates and the total mesh displacement for each node 
of the defined FSI interface (see Figure 21). In the current case, the FSI interface comprises 
the side and top cylinder surfaces.       

 

 

Figure 21: Input file for the ANSYS CFX-MOR simulation 

 

In a next step, the MOR model was built and integrated in the ANSYS CFX input deck. This 
was done with the help of CEL (CFX Expression Language) expressions. Additional variables 
and expressions are generated for the fluid forces acting on the FSI interface surface, the 
nodal displacements, the nodal velocities, etc. To calculate the displacement of each node 
of the FSI surface in X, Y and Z directions, the information provided in the six MOR input 
files (Figure 21 shows the one for the first vibration mode) is used as six field functions, 
containing the total mesh displacements from the modal analysis. This information in 
conjunction with the method of mode-superposition is utilized for the calculation of the 
three displacement components in X, Y, Z directions, which are provided to the FSI 
interface surface in ANSYS CFX (Figure 22). The CFD code calculates the new mesh and then 
performs with the new, deformed mesh its simulation, generating new results for the 
updated pressure distribution on the FSI surface. This data is then passed back to the MOR, 
which provides the new nodal displacements to ANSYS CFX. User Defined Routines are 
called at the end of each time step to store the calculated data, which is also used for the 
computations in the next time step. 
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Figure 22: CEL expressions for the displacements in X, Y, Z directions, provided to ANSYS 
CFX for the calculation of the new, deformed mesh. 

 

2.3 Results and comparison between FOM and ROM 

2.3.1 Flow pattern 

Figure 23 shows the velocity distribution in the test channel, calculated by ANSYS CFX-
MOR. The mean velocity in front of the cylinder is around 0.46 m/s with Re~1.55x104. Zones 
with higher and lower velocities develop around the cylinder, since the vertical structure 
leads to local flow acceleration and deceleration. Zones with different pressure levels form 
on the cylinder’s surface that disturb the local boundary layers. The phenomenon leads to 
local boundary layer detachment that causes the formation of the vortices. These vortices 
detach from the cylinder surface and stimulate its vibration. The maximal local velocity 
reached is 0.86 m/s and is found in the small gap between the top cylinder surface and the 
top channel wall. One can also clearly see the interface between RANS and LES region 
upstream the cylinder. 

Figure 24 shows with the help of velocity vectors flow acceleration, deceleration and 
recirculation zones as well as formation of von Karman vortex street behind the cylinder. 
Local negative flow velocities down to -0.2 m/s are observed in the recirculation zones that 
form behind the cylinder. The observed flow pattern is typical for cylinders exposed to a 
cross-flow.  
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Figure 23: Streamwise velocity distribution in the flow channel. 

 

 

Figure 24: Velocity vectors in XY plane showing flow acceleration, deceleration and 
recirculation zones as well as the formation of von Karman vortex street behind the 

cylinder. 
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2.3.2 Vibration analysis 

The cylinder displacement in transverse (lift) direction, measured at the top of the cylinder, 
is shown in Figure 25. The first 0.3 s are omitted, in order to exclude the transient phase at 
the beginning of the coupled calculations. Although not identical, the displacements look 
similar. By building the RMS values of both signals over the entire simulation time 
(excluding the first 0.3 s), the following values are obtained:  

- System coupling (FOM) RMS displacement = 1.64e-6 m 
 

- ANSYS CFX-MOR (ROM) RMS displacement = 1.77e-6 m 

The ROM overestimates the RMS displacement, predicted by the FOM, by 8%, which can be 
considered as a good approximation. In this particular case, the ROM appears to provide 
conservative results.     

Figure 25 and Figure 26 show the calculated APSD of the displacements using an FFT 
analysis. It can be seen that both approaches agree on the same vortex-shedding 
frequency from the cylinders’ surfaces, which is 18.9 Hz. 

 

 

Figure 25: Cylinder displacement in transverse (lift) direction, calculated with full-order 
and reduced-order FSI models. 
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Figure 26: Power spectral density, based on the calculated time-dependent 
displacements. 

 

2.3.3 Efficiency comparison 

The comparison of the analysis efficiency is based on the consumed wall-clock time. Both 
simulations were performed on 24 parallel cores, distributed on two nodes. The cores were 
of type Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz. The parallelization was realized with 
Intel MPI, the cluster was equipped with InfiniBand.  The simulation with the FOM took 22.8 
days, while the one with the ROM – 4.6 days. The advantage of the fast-running method, 
based on structural ROM is obvious: it is a approx. a factor of 5 faster than the reference 
FOM. The following has to be considered: 

- Although both CFD domains are the same, the higher wall-clock time required by 
the FOM mainly results from the staggered iterations between ANSYS CFX and 
Mechanical (3x3 CFX iterations in one time step). In the ROM case, both codes 
exchange data once after each time step (explicit coupling), which results in totally 
3 CFX iterations per time step. 
 

- It is clear that the wall-clock time needed by Mechanical in the FOM calculation also 
contributes to the total increase of the FOM computational time. However, the 
higher number of CFX iterations in the FOM case has a stronger impact on the total 
wall-clock time. 
 

- In the full coupling with SYSC, 90% of the cores are reserved for the CFD process and 
the rest – for the CSM process. This means that less cores are used for the CFD 
solution. The user is free to specify how many cores to be used by each code. In the 
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ROM case, all cores are used by the CFD process. The MOR routines are executed 
on the master core at the end of each time step.   
 

- Test calculations with higher number of modes (up to 12) showed increase in the 
CPU time, which is not remarkable. The results did not change, since the influence 
of the higher modes is negligible in this simulation. This might be different in cases 
with configurations with multiple vibrating structures (e.g. fuel assembly with many 
vibrating rods).  

 
- Modal analysis with finer structural grids would lead to larger input files for the 

MOR approach, thus increasing the CPU time. Still, the CPU time needed by the 
MOR is negligible in comparison to the one consumed by the CFD code. Therefore, 
finer grids of the vibrating structure do not remarkably affect the overall wall-clock 
time of the ANSYS CFX-MOR run.    

 

2.4 Conclusions and further steps 

This chapter is dedicated the MOR approach, developed by ANSYS. It first introduced the 
approach, based on the method of mode-superposition. Further, its implementation for a 
simplified FIV test case was described. To check the advantages of this method over the 
FOM, a comparative analysis has been performed. It showed increased efficiency of the 
ROM method against the original FOM: the wall-clock time of the fast-running method was 
approx. a factor of five smaller. The accuracy in terms of vibration frequency was perfect, 
while a small overestimation of the RMS amplitudes by the ROM was observed.  

It can be concluded that ANSYS MOR is a promising fast-running method that can provide 
comparable results to the ones generated with the FOM at a significantly lower 
computational cost. Further comparative analyses are necessary in order to fully assess the 
ROM performance. It should be tested for larger systems in terms of mesh elements as 
well as for ones with multiple vibrating components (e.g. multiple vibrating tubes rods in a 
tube bundle).  
  



GO-VIKING 
Report Title  

44 
 

3. Development and application of the Synthetic 
Turbulence procedure in fast-running FSI 

This section describes the main approaches that are used by IPP for one-directional and 
two-directional FSI, taking into account the reconstruction of the turbulent pulsation field. 
The main criterion for selecting the used approaches is their speed and sufficient accuracy 
for engineering practice. 

3.1 Introduction 

The factual picture of the turbulent pulsation field is generally anisotropic, chaotic in nature 
and is determined by many geometrical and physical factors. There are two methods to 
solve such a problem. 

The first method is to experimentally study the characteristics of the contact problem 
between a medium and a wall [20] (using special probes). The general results of such 
studies are the integral force and resistance coefficients, which take into account both the 
viscous component and the turbulent effect on the studied wall [21]. This approach is 
individual and allows one to disseminate the results only within the framework of similarity 
theory. 

The second method is to use computational fluid dynamics. It is believed that the use of 
DNS methods is capable of completely predicting the real pulsation pattern and giving 
results that can be selected as reference (in other words, close to the experiment). To date, 
fundamental research related to turbulence and exchange processes in the boundary layer 
is carried out only for relatively simple geometries [22]. In relation to practical problems, 
scale-resolving approaches (SRS) are used, based on turbulence models, which inherently 
predict the energy spectrum of pulsations. Experience in using such approaches indicates 
the correct prediction of pulsations not only in the volume, but also on the solid body 
surface [23]. In general, a number of international test problems indicate the consistency 
of the SRS method for a whole range of problems in which the target characteristic (for 
example, the mixing scalar) largely depends on the quality of turbulence prediction [24]. 
The use of the SRS method requires significant computing resources. Obviously, the 
process is considered to be exclusively non-stationary (the definition of turbulence as 
such), therefore, the total duration of the calculation is affected by the initialization. In 
some cases, incorrect initial conditions (in the sense of being “far” from the true flow 
pattern, for example, initialization without a pulsation field) can lead to the fact that 
starting to simulate the “true” flow pattern can take up to 50% of the entire calculation. 
This circumstance significantly complicates the practical application of this method. The 
use of initialization using the RANS approach somewhat reduces the recovery time, which 
allows, at best, to spend up to 20% of the time on restoring the pulsation component. 

A modern approach is the creation of a special procedure for reconstructing the pulsation 
field based on synthetic turbulence [25,43], which, based on RANS, generates a physically 
based field of turbulent pulsations and is the initial condition for SRS methods. Experience 
shows that in most cases the generated field is "close" to what is set using only the RANS 
- SRS approach [26]. 



GO-VIKING 
Report Title  

45 
 

For example, on the scale of pressurized water reactors (PWR) , the use of the SRS 
approach is still very computationally expensive, considering the fact that only some 
fragments of the internals and reactor pressure vessel (RPV) surfaces are of interest. In this 
regard, a special procedure for reconstructing the velocity pulsation field based on a 
synthetic turbulence generator was developed, which is used in conjunction with CFD 
modeling with the RANS/URANS approach. The results obtained can subsequently serve as 
a good initialization for CFD calculations using SRS (LES, Detached Eddy Simulation (DES), 
Scale-Adaptive Simulation (SAS)). 

When performing a coupled FSI analysis (one/bi-directional), synthetic pulsations can be 
taken into account when calculating the corresponding force factors. In this case, a 
simplified URANS model of turbulence transfer of eddy viscosity is used, which is obtained 
by combining the equations for the transfer of turbulence kinetic energy and its dissipation, 
obtained within the framework of the RNG theory. 

3.2 One-equation RNG turbulence model 

Currently, there is a wide variety of turbulence models of various parametrics, which are 
widely used both in commercial application software packages, such as ANSYS Fluent,CFX, 
etc., and in proprietary codes. Herewith, the problem of choosing one or another 
turbulence model arises. Quite often, when calculating complex flows, a two-parameter 
RNG k-ε model is used. Besides this, empirical one-parameter models with one additional 
equation are also applied. The presence of only one additional equation (compared to two-
parameter ones) speeds up and simplifies the calculation procedure due to a possible loss 
of calculation accuracy. One of these is a model that contains an additional equation for 
effective viscosity. Such an empirical model was first proposed in the works [27,28]. Later, 
a similar empirical model was developed [29,30]. The mentioned models include a number 
of empirical coefficients and terms, which is their drawback. The one-parameter model of 
effective viscosity and thermal diffusivity proposed below does not include these 
coefficients and is based on the RNG k-ε model. The main equation of this model [31] of 
variable effective viscosity has the following final form: 

∂𝜈
∂t + 𝑢

𝜕𝜈
∂x + 𝑣

𝜕𝜈
∂y + 𝑤

𝜕𝜈
∂z =

𝜕
∂x Z

𝜈
PrM

𝜕𝜈
∂x[ +

𝜕
∂y Z

𝜈
PrM

𝜕𝜈
∂y[ +

𝜕
∂z Z

𝜈
PrM

𝜕𝜈
∂z[ +

+�𝐶N:(𝐶5O∗ + 𝐶+O)𝑆𝜈! −
4𝐶N:𝜈+

𝑆+PrM
Z
𝜕𝑆
∂x[

+

−
4𝐶N:𝜈+

𝑆+PrM
Z
𝜕𝑆
∂y[

+

−
4𝐶N:𝜈+

𝑆+PrM
Z
𝜕𝑆
∂z[

+

(30)
 

Where  – effective and turbulent viscosity, respectively;  – velocity projections 

onto the corresponding axes of the Cartesian coordinate system;  – the Prandtl number 

of kinetic energy of turbulence, which can be obtained from the solution (31) of the 
differential equation, which is similar to the equation of the form (32). 

¼
Pr𝐾−1 − 𝑐
1 − 𝑐

¼

𝑐+1
𝑐+𝑏

¼
Pr𝐾−1 + 𝑏
1 + 𝑏

¼

𝑏−1
𝑐+𝑏

=
𝜈0
𝜈𝑡

(31) 

! !ν ν ! !! " #

!"!
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∂Pr𝑡
−1

∂τ
=
1
𝜈
∂𝜈
∂τ
p
𝑑 − 1
𝑑

𝐴½𝑑
1

1 + Pr𝑡−1
− Pr𝑡−1q (32) 

Where coefficients c = 5
+
p�4 (<5

(
𝐴¾(

<5 + 1 − 1q, 𝑏 = 5
+
p�4 (<5

(
𝐴¾(

<5 + 1 + 1q	and 𝐴¾( =

(<5
+((H+)

 in which parameter 𝑑 defines the dimension of the problem to be solved. For three-

dimensional space (𝑑 = 3) coefficients 𝑐 and 𝑏 are equal to 1.3929 and 2.3929 respectively. 
In a fully developed turbulent flow, the Prandtl number is equal Pr+ = 1 1.329⁄ = 0.7179. 

Coefficient	𝐶𝜈, that relates parameters RNG k-ε turbulence model and turbulent viscosity 
in general, can be found according to the relationship: 

𝐶𝜈 =
2
3𝐶𝐾2

p𝛾
𝐴½𝑑
9
q
1 3⁄

(33) 

Where 𝐶M – Kolgomorov constant, which can be found from the relation: 

𝐶𝐾 = 1.488 ∙ 𝛾1 6⁄ (34) 

The value of the constant 	𝛾, which is determined theoretically on the basis of the 
turbulence energy balance equation for the inertial range [32,33] for the renormalization 
one-parameter turbulence model is equal to 1.575, then the value of the constant	𝐶T =
0.0847. The value of the constant 𝐶+O  in equation (30) is equal to 1.68, and the value of the 
coefficient 𝐶5O∗  is found according to the dependence: 

𝐶1𝜀∗ = 𝐶1𝜀 −
𝜂𝜀

1 + 𝛽𝜀 ∙ 𝜂𝜀
3 p1 −

𝜂𝜀
𝜂𝜀0
q (35) 

Where the parameter values are: 𝐶5O = 1.42, 𝛽O = 0.014 and 𝜂O = 1 ?𝐶T⁄ , and parameter 
𝜂OU  is determined by the expression: 

𝜂𝜀0 = Ã
𝐶2𝜀 − 1

(𝐶1𝜀 − 1)𝐶𝜈
(36) 

Based on the values of the coefficients that are included in (35), the parameter 𝐶5O∗ =
0.950825. In general, the theoretical value of the constant 𝛾 may differ from those 
accepted above, depending on the method used, from those presented in the references 
[34,35]. The values of the coefficients that are included in equation (30) depending on the 
model adopted for calculating the constant 𝛾, are summarized in Table 3. 
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Table 3: The values of the constants included in equation (30), depending on the 
adopted approach to  calculation 

Reference 𝑪𝑲 𝑪𝝂 𝜸 𝜷𝜺 𝑪𝟏𝜺∗  

[32,33] 1.605 0.0847 1.575 0.014 0.950825 

[34] 1.436 0.1 4/3 0.027 1.054790 

[35] 1.667 0.08 5/3 0.011 0.910666 

The last parameter S is determined according to the dependence: 

𝑆 = Ã2 ∙ ÇZ
𝜕𝑢
∂x
[
2

+ Z
𝜕𝑣
∂y
[
2

+ Z
𝜕𝑤
∂z
[
2

È + Z
𝜕𝑢
∂y

+
𝜕𝑣
∂x
[
2

+ Z
𝜕𝑢
∂z
+
𝜕𝑤
∂x
[
2

+ Z
𝜕𝑣
∂z
+
𝜕𝑤
∂y
[
2

(37) 

3.3 Synthetic Turbulence Generation Procedure 

In general, the velocity field can be represented as a superposition of the averaged velocity 
and the pulsation component: 

{𝑢(𝑟, 𝑡), 𝑣(𝑟, 𝑡), 𝑤(𝑟, 𝑡)} = {𝑈(𝑟), 𝑉(𝑟),𝑊(𝑟)} + {𝑢C(𝑟, 𝑡), 𝑣C(𝑟, 𝑡), 𝑤C(𝑟, 𝑡)} (38) 

where 𝑈, 𝑉, 𝑊 – average velocity, 𝑢C, 𝑣C , 𝑤C- pulsation component. 

Next, we introduce the concept of a model field of velocity pulsations [36,37], for which 
the following relations are valid: 

• The expected value of each component is zero 𝑀(𝑢A∗) = 0. 

• The expected value of the product of components (second moment) is equal to the 
Kronecker symbol 𝑀a𝑢A∗, 𝑢=∗d = 𝛿A=. 

The true velocity pulsation field is connected to the model one through a scaling matrix: 

Í
𝑢C(𝑟, 𝑡)
𝑣C(𝑟, 𝑡)
𝑤C(𝑟, 𝑡)

Î = [𝐴]Í
𝑢∗(𝑟, 𝑡)
𝑣∗(𝑟, 𝑡)
𝑤∗(𝑟, 𝑡)

Î (39) 

The scaling matrix [𝐴] must depend on the energy characteristic, which is calculated using 
RANS. In the general case, when taking into account the anisotropy of the flow, for 
example, using Reynolds stress models (40) the matrix [𝐴] must satisfy the expansion 
[𝑅] = [𝐴][𝐴]B. 

[𝑅] = Í
−𝜌U〈𝑢C𝑢C〉 		− 𝜌U〈𝑣C𝑢C〉 		− 𝜌U〈𝑤C𝑢C〉
−𝜌U〈𝑣C𝑢C〉 		− 𝜌U〈𝑣C𝑣C〉 		− 𝜌U〈𝑤C𝑣C〉
−𝜌U〈𝑢C𝑤C〉 		− 𝜌U〈𝑣C𝑤C〉 		− 𝜌U〈𝑤C𝑤C〉

Î (40) 

γ
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In fact, the RANS approach models the entire spectrum, or rather the integral of the 
spectral density of kinetic energy over wave numbers. In this case, the Reynolds stress 
tensor has a diagonal form, and can be represented as the product of the unit matrix and 
a vector with coordinates in the form of double the turbulence kinetic energy [38]. 

Thereby, ?𝑅55 = ?𝑅++ − 𝐴+5+ = ?𝑅:: − 𝐴:5+ − 𝐴:++ = �+
:
𝑘!(𝑟), 𝑘!(𝑟) - turbulence kinetic 

energy. It is worth noting that the empirical constants included in the terms,contributors 
to the process of kinetic energy transfer, are calibrated on the basis of experimental data 
in such a way as to correctly reproduce the integral value (Figure 27). 

[𝐴] =

⎝

⎜⎜
⎜
⎛
?𝑅55 0 0
𝑅+5
?𝑅55

�𝑅++ − 𝐴+5+ 0

𝑅:5
?𝑅55

𝑅:+ − 𝐴+5𝐴:5
𝐴++

�𝑅:: − 𝐴:5+ − 𝐴:++
⎠

⎟⎟
⎟
⎞

(41) 

The generation of velocity pulsations {𝑢C, 𝑣C, 𝑤C} is reduced to the generation of a field 
{𝑢∗, 𝑣∗, 𝑤∗}, which is represented in the form of amplitude-modulated Fourier modes. 
Then, taking into account (39) and the diagonal pulsation stress tensor, the field {𝑢C, 𝑣C, 𝑤C} 
can be represented in vector form: 

𝑢°⃗ C(𝑟, 𝑡) = 2?𝑘!(𝑟)>?𝑞"(𝑟) Z𝜎⃗"𝑐𝑜𝑠 W𝑘"𝑑"𝑟 + 𝜑" + 𝑠"
𝑡
𝜏][

#

"L5

(42) 

where, 𝑁 - number of series terms (number of modes); 𝑞"(𝑟) - normalized amplitude 
of one mode, which is determined by the local von Kármán turbulence energy spectrum; 
𝑘" - mode wave vector module number n; 𝜎⃗" - unit vector, which determines the direction 
of the velocity mode number n (actually defines velocity projections); 𝑑"- unit vector, which 
determines the direction of the wave number (uniformly distributed over the unit sphere); 
𝜑" - phase of the nth velocity mode; 𝑠" - dimensionless circular frequency; 𝜏 - global time 
scale. 

The dimensionless energy spectrum of turbulence [39] taking into account empirical 
corrections for spectrum distortion near the Kolmogorov scale of turbulence, can be 
represented in the form (43). The equation (43) considers the rapid drop in the energy 
spectrum near the wall (Figure 27), which corresponds to large dissipation near the 
boundary layer (flow laminarization) and the tendency of the turbulence kinetic energy to 
zero (laminarization as it approaches the wall). 

𝐸(𝑘) =
Ø𝑘 𝑘𝑒Ù Ú

4

W1 + 2.4 Ø𝑘 𝑘𝑒Ù Ú
2
]
17 6⁄ 𝑒𝑥𝑝n− u12

𝑘
𝑘𝜂
w
2

r 𝑒𝑥𝑝p− W
4max	(𝑘 − 0.9𝑘𝑐𝑒𝑙𝑙, 0)

𝑘𝑐𝑒𝑙𝑙
]
3

q (43) 

where, 𝑘 - wave number module, 𝑘'  - wave number corresponding to the most 
energy-carrying vortices of the synthetic turbulence field, 𝑘9  - wave number corresponding 
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to the Kolmogorov scale of turbulence, 𝑘*'--- maximum resolved wave number on the 
computational mesh. 

To determine the wave number corresponding to the most energy-carrying vortices, the 
following relation can be used: 

𝑘' =
2𝜋

𝑚𝑖𝑛 u2𝑑2%-- ,
3?𝑘!

0.09 ∙ 𝜔!
Ý w

(44)
 

where, 𝑑2%--  - minimum distance from the point under consideration to a solid wall, 
𝑘! - specific value of kinetic energy of turbulence, 𝜔! - specific rate of kinetic energy 
dissipation into heat. 

 
Figure 27: Spectral representation of pulsation energy during turbulence degeneracy 

[40] 
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The wave number corresponding to the Kolmagorov scale (the scale of structures 
dissipating into heat) of turbulence is determined according to the dependence: 

𝑘9 =
2𝜋

Ø𝜈: 𝜀Ù Ú
U.+[ (45) 

Where, 𝜈 - kinematic viscosity, 𝜀 - rate of dissipation of turbulence kinetic energy into heat. 

The value of the wave number, which corresponds to the size of the control volume, can 
be estimated according to the dependence: 

𝒌𝒄𝒆𝒍𝒍 =
𝟐𝝅

𝟐𝒎𝒊𝒏á𝟎. 𝟑		Ã𝟏𝟐𝑽𝒄𝒆𝒍𝒍
√𝟐

𝟑
+ 𝟎. 𝟏𝒅𝒘𝒂𝒍𝒍, Ã

𝟏𝟐𝑽𝒄𝒆𝒍𝒍
√𝟐

𝟑
å

(46)
 

Where, 𝑉*'--- volume of adjacent control volume (assumed close to a regular tetrahedron), 
𝑑2%--- nearest distance to a solid wall from the current node. 

Normalized amplitudes 𝑞"(𝑟⃗) determined based on (43) and can be represented as a 
discrete set (47) of 𝑁 values for each spatial point. 

𝑞"(𝑟) =
∫ 𝐸(𝑘)𝑑𝑘3&'(
3&

∫ 𝐸(𝑘)𝑑𝑘a
U

≈
𝐸(𝑘")∆𝑘"

∑ 𝐸(𝑘")∆𝑘"#
"L5

(47) 

To simulate the stochastic nature of turbulence, it is necessary to determine the 
corresponding unit vectors, which are random variables. Table 4 presents the basic 
conditions for determining the unit vectors of direction, unit vectors of wave number, 
phase and angular frequency. 

Table 4: Determination of phase quantities and decomposition characteristics 

Vector/scalar Description 

𝒅°°⃗ 𝒏 = æ𝒅𝒏𝒙; 𝒅𝒏𝒚; 𝒅𝒏𝒛è 
A unit vector that defines the direction of the wave number, 
which is the radius vector of a point uniformly distributed over 
the surface of the unit sphere. 

𝝈°°⃗ 𝒏 = æ𝝈𝒏𝒙; 𝝈𝒏𝒚; 𝝈𝒏𝒛è 

A unit vector that determines the direction of the velocity mode 
at a specific spatial point. The direction is determined by a 
random, uniformly distributed number in the interval [0; 2𝜋) 
provided that 𝑑" ∙ 𝜎⃗" = 0 (Figure 28) 

𝝋𝒏 
Phase of mode with number n, uniformly distributed in the 
interval [0; 2𝜋). 

𝒔𝒏 
Dimensionless circular frequency of mode with number n, which 
is a random variable with normal distribution 𝜇 = 2𝜋; 𝜎 = 2𝜋) 

 
The “synthetic turbulence” time scale 𝜏, which is global for the entire calculation 
procedure, is defined as: 



GO-VIKING 
Report Title  

51 
 

𝜏 =
2
𝑈𝑚𝑎𝑥 Z

𝑘'
2𝜋[

(48) 

where, 𝑈 - determining flow velocity. 

The set of wave numbers is preserved for the entire computational domain, and is specified 
according to a geometric progression (denominator - 𝑞 = 1.01 ÷ 1.05), and the minimum 
wave number value corresponds to 𝛽𝑚𝑖𝑛[𝑘'(𝑟)] [41]. The number of calculated modes is 
estimated based on the assumption that the maximum wave number is equal to 
:
+
𝑚𝑎𝑥[𝑘*'--(𝑟)]. 

 
Figure 28: Towards the determination of the wave number unit vectors and projections 

of the pulsation velocity components 

The restoration of the static pressure pulsation field  can be carried out based on energy 
considerations. The total energy of turbulence consists of kinetic and potential energy of 
fluctuations. This conclusion on the basis of the generality of conservation laws for physical 

processes leads to the fact that 𝑝C(𝑟, 𝑡)~𝑘! =
fghh⃗ )(&,!)

+
 [42]. On the other hand, pressure 

pulsation has a nonlinear relationship between pulsations at geometrically close points. In 
fact, this means that the amplitude value is determined by the double correlations of the 
pulsations at the corresponding points (by and large, including the velocity). As a result of 

!!
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research, as well as theoretical generalizations obtained for correlations of velocity and 
pressure, the field of pressure pulsations can be represented through the field of 
pulsations of the velocity modulus as [39]: 

𝑝C(𝑟, 𝑡)~𝑘! = 𝐶 ∙ 𝜌([𝑢C]+ + [𝑣C]+ + [𝑤C]+) (49) 

Yuber's experiments [39], indicate that the coefficient 𝐶 at high Reynolds numbers 
(developed turbulence in the main flow) tends to 𝐶 ≈ 0.7 ÷ 0.8. The developed procedure 
assumes that the pressure pulsation corresponds to twice the kinetic energy of turbulence 
(𝐶 = 1). 

The calculation procedure consists of two stages. At the first stage, the defining 
parameters in the expansion (42) are calculated and the temporary functions of the 
velocity projection are formed. 

The main difficulty lies in determining the unit vectors 𝑑" and 𝜎⃗", namely obtaining a 
uniform distribution over the sphere surface with subsequent orthogonalization of a 
randomly directed vector 𝜎⃗" relative to 𝑑". As part of the synthetic turbulence generation 
procedure, a generator of a random uniformly distributed value was developed based on 
the Delaunay triangulation algorithm. A virtual triangular mesh consisting of regular 
triangles of equal area was superimposed on the surface of the sphere, which in fact 
(within the error of the method) makes it possible to obtain a linear indexed array of N 
evenly distributed points. In this case, the task of obtaining the unit vector actually comes 
down to playing the number from 1 to N (depending on the surface discretization) with a 
pseudo random number generator. For convenience, when finding the coordinates of the 
unit vector 𝜎⃗" a local coordinate system (LCS) of the plane perpendicular to 𝑑" is 
introduced. The local coordinate system is obtained by rotating the global coordinate 
system (GCS) around the Oz axis so as to exclude any one projection onto the axis 
perpendicular to Oz. Then the intermediate coordinate system is rotated around the axis 
of the intermediate coordinate system with zero projection 𝑑" so that 𝑑" is actually 
projected at the starting point of the LCS (Figure 28). Next, an angle is generated in the LCS 
in the form of a randomly distributed value within [0; 2𝜋] and projections of the unit radius 
vector are found. After this, by matrix rotations of the LCS in the reverse order described 
above, projections  in the GCS are restored. 

To avoid numerical problems in damping functions 𝑒𝑥𝑝 p− W12 3
3*
]
+
q and 

𝑒𝑥𝑝 Z− î4klm	(3<U.n3!+,,,U)
3!+,,

ï
:
[ a degree control is introduced, which limits the calculation of 

the function and replaces it with a number close to 0.0. 

At the second stage, a smoothing interpolation function is constructed on a discrete set of 
input data coordinates, which is subsequently used only for visualization. 

The following quantities are used as a set of input data: coordinates of the angles near 
surfaces or volume, density, dynamic viscosity 𝜇, eddy viscosity 𝜇!, dissipation rate of 
kinetic energy of turbulence 𝜀, specific dissipation rate of kinetic energy of turbulence 𝜔, 
kinetic energy of turbulence 𝑘!, volume of the adjacent control volume 𝑉*'--, distance to 

!σ
!
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the nearest wall 𝑑2%--. The results of comparative analysis with calculations obtained in [26, 
41] are showed in Figure 29 - Figure 30. 

 
Figure 29: Comparison of the velocity pulsation field generated using the synthetic 

turbulence method (1) with that calculated using the SRS method (2) [41] 

 
Figure 30: Velocity pulsation field in a flat channel obtained using the synthetic 

turbulence method (1) and using LES (2) [26] 
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Also, as an example of the synthetic turbulence procedure application, an analysis of the 
results obtained for the VVER-1000 reactor downcomer could be presented. The time step 
for the formation of a discrete output data set of the pressure pulsation field was taken 
equal to 0.25 from the minimum cyclic frequency in the velocity field expansion. The 
generated volume of pulsation field data corresponds to 1 m/s. The determining velocity 𝑈 
included in (48) is defined as the average mass value in the cold leg of the main circulation 
circuit (MCC), and is taken equal to 9.8 m/s. Coefficient 𝛽, which determines the minimum 
wave number, is taken equal to 0.5, and the denominator of the geometric progression is 
equal to 1.025. 

The procedure for reconstructing the pressure pulsation field based on synthetic 
turbulence was used for the external/internal cylindrical surfaces of the core barrel and the 
reactor pressure vessel. 

The time dependence of the normalized maximum pressure pulsations is shown in Figure 
31. 

 
Figure 31: Change in the maximum value of pressure pulsation normalized to the 

dynamic pressure at the reactor inlet (cold leg of the MCC) over time 

The root mean square value of the generated maximum pressure pulsations (normalized) 
in the downcomer corresponds to ~0.015, while according to experimental data [44] taking 
into account the equality of the inlet velocity to ~10 m/s it corresponds to a value of ~0.011. 
According to the amplitude values, considering that, approaching the wall, the speed 
decreases, experiments on a cylindrical surface [42] give a pulsation value from 0 to 2-4 kPa 
with an undisturbed flow. Using the synthetic turbulence procedure, values in the 
downcomer region are predicted to be ~3.4 kPa. Even such a non-rigorous comparison of 
the results indicates a high degree of physicality of the results obtained. 
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3.4 Definition of oscillators and forces calculation method 

To estimate both vertical and transverse displacements, two methods of specifying 
oscillators are considered. Two-dimensional approximation is considered by default. In the 
first case, this is a concentrated mass on an ideal spring suspension, which in general can 
consist of 𝑛 ideal springs with different stiffnesses. The second type of primitive oscillators 
are the so-called angular oscillators (Figure 32). Note that each of these simple oscillator 
types are available in commercial CFD packages that support the Rigid Body 
approximation. 

 

Figure 32: Method for determining oscillators (a – spring oscillator, b – angular 
oscillator) 

To determine the displacements using the example of a three-spring oscillator with 
damping, a system of equations is used: 

⎩
⎪
⎨

⎪
⎧𝑚

𝑑2(𝛿𝑥)
𝑑𝑡2

+>up𝑘𝑖𝛿𝑥 + 𝛽
𝑑(𝛿𝑥)
𝑑𝑡

q 𝑐𝑜𝑠2(𝑎𝑖) + p𝑘𝑖𝛿𝑦 + 𝛽
𝑑(𝛿𝑦)
𝑑𝑡

q 𝑠𝑖𝑛(𝑎𝑖)𝑐𝑜𝑠(𝑎𝑖)w = 𝐹𝑥(𝑡)
𝑛

𝑖=1

𝑚
𝑑2(𝛿𝑦)
𝑑𝑡2

+>up𝑘𝑖𝛿𝑥 + 𝛽
𝑑(𝛿𝑥)
𝑑𝑡

q 𝑐𝑜𝑠(𝑎𝑖)𝑠𝑖𝑛(𝑎𝑖) + p𝑘𝑖𝛿𝑦 + 𝛽
𝑑(𝛿𝑦)
𝑑𝑡

q 𝑠𝑖𝑛2(𝑎𝑖)w = 𝐹𝑦(𝑡)
𝑛

𝑖=1

(50) 
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where m – concentrated mass, kg; k – spring stiffness, N/m; β – equivalent damping 
factor, N·s/m; Fx and Fy – resultant hydrodynamic (disturbing) forces. 

To determine displacements using a simple angular oscillator model (Figure 32 b) equation 
(51) with a single resultant force is applied. Where, the displacement in chosen direction is 
defined as (52). 

𝐽
𝑑+𝜃
𝑑𝑡+

+ 𝐽 Z
𝑑𝜃
𝑑𝑡
[
+

+ (2𝜋𝑓U)+𝐽𝜃 = 𝐹 ∗ 𝐿&'> (51) 

𝛿 = 𝜃 ∗ 𝐿&'> (52) 

In each case, force effects are calculated in two ways. In the first case, the concept of 
braking speed in the form of dynamic pressure is used. There, forces are determined using 
the equation: 

𝐹(𝑡) = ö
𝐹1(𝑡)
𝐹.(𝑡)

÷ =>(𝑝 + 0.5𝜌[𝑢+ + 𝑣+])𝑆Ao W
cos	(𝜙A)
sin	(𝜙A)

]
0

AL5

(53) 

Where, m – the number of calculated points along the selected perimeter, 𝑆Ao  – an 
elementary area. 

𝐹(𝑡) =

⎩
⎪
⎨

⎪
⎧𝐹1 =>Z−𝑝 · cos(𝜙A) + µ W2

𝜕𝑢
𝜕𝑥 cos

(𝜙A) + Z
𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥[ sin	(𝜙A)][ 𝑆A

o
0

AL5

𝐹. =>Z−𝑝 · sin(𝜙A) + µ WZ
𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥[ cos

(𝜙A) + 2
𝜕𝑣
𝜕𝑦 sin	(𝜙A)][ 𝑆A

o
0

AL5

(54) 

To consider synthetic turbulence fields in the force factors, a pulsating pressure 
component is added for equations (53) and (54). It is assumed that the velocity fluctuations 
are damped in the boundary layer. If there is fastening in one of the cross-section 
directions, the corresponding force is assumed to be zero 

3.5 Various methods of implementing calculations 

IPP considers several options for using the described approaches, which can be adapted 
depending on the specifics of the problem being solved. The simplest method is based on 
the use of a commercial CFD package (ANSYS CFX, Fluent) with the concept of Rigid Body. 
This approach is preferred unless there are special flow or solid body conditions. Also, 
results using a commercial package can be used for cross-validation/verification of own 
procedures. The second option is the coupled use of external procedures for generating 
synthetic turbulence and an oscillator with a CFD code (ANSYS CFX). This method makes it 
possible to take into account the presence of turbulent pulsations in force factors. The 
schematic diagram for calculating one iteration at a global time step Δt is shown in Figure 
33. It should be noted that in this method of implementing coupling, the concept of three 
time steps is introduced. The first of them is the global time step of iterations, the second 



GO-VIKING 
Report Title  

57 
 

is the local step of solving equation (50) or (51), which is taken to be several times 
(approximately 10 times) smaller than the global one. In this case, the solution of (50) or 
(51) is sought implicitly in the interval from Δti-1 to Δti under initial conditions in the form of 
displacements and their velocities. The third time step concerns the update of the 
turbulent pulsation field, which can be controlled independently of the two previous types. 
The calculation of forces in this case is carried out using the relations (53). Despite the fairly 
simple implementation, flexibility of settings, as well as the ability to implement special 
models and non-local relationships, the proposed method has a drawback associated with 
the non-optimal distribution of computing resources. The most time-consuming is 
updating synthetic turbulence fields (their calculation and reinitialization), which in some 
cases can take 30÷50% of the total calculation time per global time step. 

 

Figure 33: Scheme of organizing one computational cycle for a global time step 

The third option for organizing calculations considers our own procedure, which solves the 
isothermal system (55) in a two-dimensional incompressible approximation. 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜕𝑈
𝜕𝑥

+
𝜕𝑉
𝜕𝑦

= 0

𝜕𝑈
𝜕𝑡 = 𝛼𝑈 + 𝛽𝑈U + 𝛾𝑈UU + 𝑈

𝜕𝑈
𝜕𝑥 + 𝑉

𝜕𝑈
𝜕𝑦 = −

1
𝜌
𝜕𝑝
𝜕𝑦 + 𝜇'>> p

𝜕𝑈+

𝜕𝑥+ +
𝜕𝑈+

𝜕𝑦+q − 𝑔𝑛1

𝜕𝑉
𝜕𝑡 = 𝛼𝑉 + 𝛽𝑉U + 𝛾𝑉UU + 𝑈

𝜕𝑈
𝜕𝑥 + 𝑉

𝜕𝑈
𝜕𝑦 = −

1
𝜌
𝜕𝑝
𝜕𝑦 + 𝜇'>> p

𝜕𝑉+

𝜕𝑥+ +
𝜕𝑉+

𝜕𝑦+q − 𝑔𝑛.

(55) 
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Where α, β, γ – time derivative discretization coefficients (implicit, second order), which 
are determined by (56) for the adaptive time step, nx and ny – projection of gravity onto 
the coordinate axes. 

𝛼 =
2∆𝑡 + ∆𝑡U
∆𝑡(∆𝑡 + ∆𝑡U)

; 𝛽 =
∆𝑡 + ∆𝑡U
∆𝑡∆𝑡U

; 	𝛾 =
∆𝑡

∆𝑡(∆𝑡 + ∆𝑡U)
(56) 

Where ∆𝑡 – current time step, ∆𝑡U- previous time step. 

The effective viscosity is calculated using the one-parameter RNG turbulence model, in 
which, for simplicity, the turbulent Prandtl number Prt is taken as a constant value equal to 
1.0. 

The solution (55) is based on the Finite-Element Method (FEM). In this case, velocities are 
described by the second order and pressure by the first/second order. The shape function 
is chosen in the form of a geometric polynomial. A nonlinear solution is constructed in the 
form of “lagging” coefficients with preservation of gradient values. The iterative 
procedure tracks the convergence of the fields by calculating the average and maximum 
deviations. Velocity and pressure fields are solved without segregation, which for a two-
dimensional case is a fairly reliable method when using FEM. 

The computational mesh is structured anisotropic with the presence of moving areas and 
an algorithm for dynamic blocks re-meshing (Figure 34). When the geometry changes (the 
movement of the nodes of which, according to the procedure settings, is estimated at the 
end of the iterative cycle in space or at the end of the time step), the data is strictly 
associated to the node indices. Consequently, the structure of the matrix remains similar, 
and updating is only necessary for the values of the corresponding cells, which helps speed 
up calculations. The calculation procedure provides for the possibility of thickening the 
computational mesh near solid walls. 

 

Figure 34: Dynamic mesh block 
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At each node, the pulsating components of the velocity and pressure fields can be 
calculated. To do this, it is necessary to determine the matrix coefficients (41). Since the 
RNG 1-eq. model operates with effective viscosity, the calculation of matrix coefficients 
(kinetic energy of turbulence) can be carried out in two ways. In the first case, it is 
considered that turbulence is in equilibrium, which allows us to assume that the specific 
kinetic energy is equal to its dissipation. Otherwise, if we assume that dissipation is not 
equalized with generation, then it is necessary to use an additional parameter (scale of 
turbulence). Thus, the coefficients of matrix (41) are calculated using (57). 

?𝑅11 = �𝑅22 − 𝐴212 = �𝑅33 − 𝐴312 − 𝐴322 =

⎩
⎪
⎨

⎪
⎧ 𝐼:Ã

2𝜈𝑡
3𝐶𝐷

; 	𝜀 =
𝜈𝑡
𝐶𝐷

𝐼𝐼:Ã
2
3
𝜈𝑡
𝑙
; 	𝜀 =

1
𝑙
𝐶𝑑
−0.5𝜈𝑡1.5

(57) 

Where	𝐶p = 0.08, 𝑙 – turbulence scale. 

To calculate the distance to the wall, the Poisson equations with zero Dirichlet conditions 
are solved. The field that characterizes the distance to the wall is calculated using the 
dependence (58). 

∇2𝜑 = −1

𝑑𝑤𝑎𝑙𝑙 = |∇𝜑| +?|∇𝜑|2 + 2𝜑
(58) 

3.6 Conclusions and further work 

This section provides a brief description of the approaches used by IPP to calculate coupled 
vibrations in a simplified formulation. To generate turbulent pulsations, which can be taken 
into account when determining the resultant force, the synthetic turbulence procedure is 
used. The proposed procedure is simplified, since it is based on local parameters that take 
into account only the averaged flow history. In this case, the turbulent characteristics 
(correlations of velocity pulsations) are considered as isotropic. Despite significant 
simplifications compared to procedures that consider the transfer of pulsation 
characteristics, preliminary tests showed a good degree of agreement between the 
qualitative picture of the synthetic turbulence generator and the application of the SRS 
method, which is satisfactory for engineering practice. The pulsation component of 
pressure is calculated based on a simple algebraic relationship, where it is assumed that 
pressure pulsation is a dynamic consequence of velocity pulsation. The main approaches 
for organizing the calculation procedure, as well as the method for calculating the resultant 
force, are briefly outlined. In order to organize more efficient calculations, a one-parameter 
turbulence model of effective kinematic viscosity transfer was proposed, which is obtained 
by combining two k-ε RNG equations. To achieve this, it became necessary to express the 
kinetic energy of turbulence and its dissipation through eddy viscosity. 

Different variants of developed methods implementation are described, which are 
promising fast methods for coupled FSI analysis. Subsequent work will be aimed at 
applying and testing the developed and proposed approaches on test cases. 
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4. Projection based fluid model for fast running FSI 
This chapter presents the fast-running fluid-structure interaction (FSI) model development 
by TU Delft on construction of a reduced order fluid model using the projection of the fluid 
response onto the structural modes. The chapter describes the theory of the projection 
based reduced order model (ROM) as well as some alternatives for reducing the 
computational effort of FSI simulations required to build the ROM model. 

4.1 Introduction 

For the development of a fast-running FSI model, the problem of vibration of rod (bundles) 
in axial flow is taken as focus point. This type of problem is characterized by small vibration 
amplitudes compared to the length of the rod, a steady mean flow condition (i.e. there is 
no large scale vortex shedding as in cases with rods in cross flow) and Turbulence Induced 
Vibration (TIV) that contributes significantly to the vibration amplitude of the rod. 

To predict the amplitude of the rod vibration, it is essential to accurately capture all physical 
mechanisms that feed or dissipate energy into the structural system. The structure itself 
can dissipate energy through material damping, for linear structure properties 
proportional to the vibration velocity. Energy can be transferred from the fluid to the 
structure as well, due to wall shear and pressure loads on the structure. The energy transfer 
can be both positive, i.e. leading to an increase in the structure’s vibration energy (increase 
of vibration amplitude) or negative (leading to a damping of the structural vibration).   

When the fluid is modelled through direct numerical simulation (DNS) or large eddy 
simulation (LES), the effect of the fluid when flowing around a deformable object is 
captured, including the resolved (large) turbulence fluctuations. Since even LES is a 
computationally demanding simulation technique, in particular when also including the 
coupling to a structure, often the dynamics of the fluid are resolved in an ensemble-
averaged manner, unsteady Reynolds-Averaged Navier-Stokes (URANS), where the 
unsteady effect on the mean flow is resolved, but only turbulence statistics are resolved 
using a turbulence model. 

A direct FSI simulation of a URANS model coupled to a structure model tends to 
underpredict the vibration amplitude of the rod, due to the lack of the turbulence forcing 
that is averaged out in the URANS approach. Methods like the ones described in Chapter 1  
and Chapter 3 of this report, aim to re-introduce the turbulence fluctuations which causes 
energy being transferred from the turbulence fluctuations into the vibration. This 
turbulence forcing can also be obtained from surface pressure fluctuations sampled 
through e.g. an a-priori LES simulation around a static rod, or from experimental data. 
However, a significant amount of computational effort is required for an FSI simulation of 
a URANS and a structural model. 

Since the structure can be efficiently represented by a reduced set of vibration modes, 
while still capturing the most important modes for predicting the vibration amplitude, here 
we will create a ROM for the (mean) fluid response to those vibration modes. This would 
allow the URANS fluid model to be replaced by the developed ROM and should include the 
fluid dynamic effects in terms of added mass, damping and stiffness effects. Building the 
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ROM requires sampled responses of the fluid model to a pre-determined interface 
perturbation. Alternative methods to improve the computational speed further are also 
investigated. 

In section 4.2 the components of an FSI system are introduced. Section 4.3 then describes 
the methodology of sampling and projecting the fluid response onto structural modes 
including alternatives for building the ROM basis. Section 4.4 focuses on the specific 
implementation into Ansys/CFX. Results on a single rod configuration are presented in 
Section 4.5 and Section 4.6 closes the chapter with conclusions and an outlook for future 
work. 

4.2 FSI system 

The case under consideration is the flow induced vibration of 
long, slender (fuel) rods in axial flow conditions. For these type 
of rods the diameter d is much smaller than the rod length L and 
the amplitude of the vibrations is much smaller than the diameter 
d. With these properties, the structure dynamics are considered 
linear for the small displacements from its undeformed state. For 
axial flow conditions, the flow is considered steady (apart from 
turbulence fluctuations) for the undeformed state and 
responding linearly to the structure dynamics. 

To simulate such a system a FSI approach is required. The main components of a fluid-
structure interaction model are: 

1. Structure domain Ω$: governing equations for the 
structure dynamics, with boundary conditions on 
Γ$ 

2. Fluid domain Ω>: governing equations for the fluid 
dynamics, with boundary conditions on Γ>  and 
(periodic) conditions on Γ>>  when bundles are considered 

3. Fluid-structure interface Γ>$: kinematic and dynamic conditions to satisfy to have 
continuity of motion and equality of stresses on the interface 

Solving both fluid and structure dynamics, together with satisfying the boundary and 
interface conditions, is often referred to as a monolithic approach. However, here 
preference is given to a partitioned approach, where different solvers are used to 
discretize and solve the governing equations of the fluid domain and structure domain. The 
challenge for partitioned solvers is satisfying the kinematic and dynamic interface 
conditions.  

To represent the FSI system in a discretized form, we use a finite element model (FEM) to 
represent the structure dynamics 

𝑀𝒙̈ + 𝐷𝒙̇ + 𝐾𝒙 = 𝑭 

𝛺f

𝛺s

𝛤fs
𝛤f

𝛤s

𝛤ff
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where M, C, K are the mass, damping and stiffness matrices, x is the state vector of the 
structure including all its degrees-of-freedom, and F is the discretized load on the structure 
(e.g. the action of the fluid onto the structure). For the computational fluid dynamics (CFD) 
model, a finite volume URANS model in an arbitrary Langrangian-Eulerian (ALE) 
formulation is used  

𝑑
𝑑𝑡! 𝑾𝑑𝑉

	

q(!)
+# p𝑬−𝑾

𝑑𝑥⃗
𝑑𝑡q𝑛°⃗ 𝑑𝑆

	

K(!)
=! 𝑱𝑑𝑉

	

q(!)
 

where W is the fluid state vector of conserved quantities within the volume V which 
contains e.g. the mass, momentum, turbulence model parameters, E contains the fluid 
dynamics define the change in e.g. momentum due to the action of convection through 

the boundary S or the action of pressure and shear stresses on the boundary S, (1⃗
(!

 is the 
velocity of the boundary S and represents the effect of the motion/deformation of the 
control volume V in time and J contains any volume source terms. When the fluid model 
does not resolve but models turbulence, the fluid state contains ensemble-averaged 
quantities e.g. velocity 𝑢�  and pressure 𝑝̅ and a statistical representation of the turbulence, 
e.g. turbulence kinetic energy 𝑘, whereas a single realization would contain fluctuations 
due to turbulence 𝑢′, 𝑝′. The ensemble averaged and fluctuation of a quantity 𝜑 are defined 
as 

𝜑�(𝑥, 𝑡) = lim
#→a

1
𝑁>𝜑A(𝑥, 𝑡)

#

AL5

 

𝜑AC(𝑥, 𝑡) = 𝜑�(𝑥, 𝑡) − 𝜑𝑖(𝑥, 𝑡) 

 
For a proper prediction of TIV, these fluctuations 𝑝′ are essential. Obtaining these by 
simulating a single realization with e.g. DNS or LES is computationally expensive, and since 
we focus here on fast running methods, we assume that a turbulence pressure fluctuation 
realization can be reconstructed from the mean flow (e.g. using the PFM model from 
Chapter 1). 

Within the computational framework, there is one additional step that can be seen as a 
third domain or field that needs to be solved for: the deformation of the fluid mesh. Within 
the ALE framework the fluid domain is not stationary, and a method is required to deform 
the interior part of the fluid mesh based on the deformation of its boundary: for FSI 
simulations this is typically the deformation of the fluid-structure interface for which the 
structure model provides the magnitude of the deformation.  
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Figure 35: Full model FSI framework 

Within the flow diagram, we can identify the structural domain, indicated by FEM, that 
solves for the structure dynamics (of the fluid-structure interface) in terms of 
displacement, velocity and acceleration. To satisfy the kinematic condition on the fluid-
structure interface, the fluid mesh is moved accordingly and the (URANS) fluid dynamics 
are solved in the CFD block. This provides the ensemble averaged flow quantities: part of 
this provides a load on the fluid-structure interface which can be seen as the 
“deterministic” load 𝑝̅ (for brevity only pressure is indicated, but wall shear stresses can be 
treated in the same way), and the “stochastic” load 𝑝′, which can be obtained from the 
mean flow quantities and turbulent statistics through a PFM model.  

Within this model, each block FEM, Moving mesh, CFD and PFM can still take substantial 
computational time. To reduce computational costs, we focus in particular on reducing the 
computational effort of the Moving mesh and CFD by replacing that by a ROM that predicts 
the (deterministic) dynamic fluid response to a given kinematic state of the fluid-structure 
interface. 

4.3 Methodology 

To build the fluid ROM, we start by decomposing the structure dynamics into decoupled 
modal vibrations. This gives a motivation to build a fluid response model to a reduced set 
of interface modes. Next the fluid response model is discussed: which interface kinematics 
to sample and how it can be seen as a pseudo-structural response model. Finally some 
alternatives for building the response model are discussed that can reduce computational 
efforts even further. 

4.3.1 Structural vibration modes 

Starting with the general dynamics for the structure 

𝑀𝒙̈ + 𝐷𝒙̇ + 𝐾𝒙 = 𝑭 

and the assumption that Rayleigh damping is applied (D is a linear combination of M and 
K), the system with N degrees of freedom, can be written as a system of N decoupled 
harmonic oscillator equations by projecting it onto the structural eigenmodes 𝝓A. The 
structure state is therefore defined by a constant mode shape 𝝓A  and a modal amplitude 
𝑎A(𝑡): 



GO-VIKING 
Report Title  

64 
 

𝒙(𝑡) =>𝝓A𝑎A(𝑡)
#

AL5

 

and its time derivates simply follow from the time derivatives of 𝑎A(𝑡): 

𝒙̇A(𝑡) = ∑ 𝝓A𝑎̇A(𝑡)#
AL5      and     𝒙̈(𝑡) = ∑ 𝝓A𝑎̈A(𝑡)#

AL5  

The property of the mode shapes  𝝓A  is that they are orthogonal, that they diagonalize M 
and K (and hence also D since it is assumed a linear combination of M and K), and with the 
appropriate scaling, satisfy 𝝓A

B𝑀𝝓A = 1, and 𝝓A
B𝐾𝝓A = 𝜔A+, and therefore the structure 

dynamics can be seen as N decoupled scalar equations:  

𝑎̈A + 𝑑A𝑎̇A + 𝜔A+𝑎A = 𝝓A𝑭(𝑡) = 𝑓A(𝑡) 

which represent the dynamics a(t) of a specific mode given a (external) modal forcing 𝑓A(𝑡). 
This shows that the dynamics of each structural mode, can be regarded as the response of 
a (damped) harmonic oscillator with a certain damping di and natural radial frequency 𝜔A  
to an external forcing 𝑓A(𝑡). Note that the modes can be ordered in increasing frequency. 
Since for harmonic motions, for a given force magnitude, the amplitude, velocity and 
acceleration scale with 1/𝜔A+, 1/𝜔A  and 1 respectively: the low frequency modes tend to have 
larger amplitudes and the higher frequency modes a larger damping. Therefore, although 
including all N modes allows the perfect representation of the original problem, very often 
only the first M modes are taken into account, as they would represent the most significant 
contributions to the resulting vibration amplitude. 

The modal forcing 𝑓A(𝑡) is obtained from spatially filtering the external forcing F(t). From a 
continuous perspective, this could be seen as computing the inner product between the 
continuous mode shape and a continuous forcing. Suppose we take the rod as example, 
the external force from the fluid onto the rod’s surface (Γ>$) is the surface integral of the 
distributed fluid loads (pressure and wall shear stress), multiplied by the mode shape, i.e. 

𝑓A(𝑡) =# 𝜙(𝑥)(−𝑝 + 𝜏̿)𝑛°⃗ 𝑑𝑆
	

s-.
 

The properties of a harmonic oscillator under external 
harmonic forcing are well known: the amplitude of the 
resulting vibration motion when 𝐹(𝑡) = sin𝜔𝑡 depends 
on the frequency ratio 𝜔/𝜔A: when the ratio is close to 1, 
resonance occurs and the resulting amplitude gets very 
large, depending on the structural damping that is 
present.  

This is in particular important for the forcing due to 
pressure fluctuations from turbulence, as turbulence 
scales operate over a broad spectrum and can therefore 
contain a forcing close to the natural frequency for which 
the energy transfer from flow to structure is very effective.  
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Although the turbulence pressure fluctuations p’ may be treated as a constant external 
forcing to the structure, the interaction between the mean (deterministic) flow and the 
vibration of the structure mode is more direct and will be discussed in the next section. 

As a result, if the amplitude of the structural motion is 
sought, we need to accurately determine the mechanisms 
that feed or dissipate energy from (each of) the structural 
modes. When the structure includes physical damping, 
this provides a means of dissipating energy. Solving the 
structure numerically can introduce numerical dissipation 
(for now this will be ignored and assumed to be much 
smaller than the physical damping). Lastly, energy can be 
added or removed through the external forcing, which in this case comes from the 
pressure and wall shear stress that the fluid exerts onto the structure. This fluid dynamic 
load has two contributions: the one from the mean/deterministic loads (resolved by 
URANS) and the one from the turbulence pressure fluctuation model. The latter one could 
be analyzed by spatially filtering the fluctuations for each structural mode and temporally 
filtering the modal forcing to the content close to resonance as it is this energy content 
that will feed effectively into the vibration mode.  

4.3.2 Fluid response model 

In the previous section it was discussed that in order to get a good prediction of the 
vibration amplitude, it would be sufficient to include a subset of the first M vibration 
modes. Secondly, the response of the mean fluid on those vibration modes needs to be 
determined as well. Within the FSI framework this means that we can represent the 
coupling diagram as below. 

 

Figure 36: Reduced model FSI framework 

The diagram shows that the output of the CFD is projected onto each mode 𝝓A  that is 
included and which will cause the each mode to obtain a state 𝑎A , 𝑎̇A , 𝑎̈A. Multiplying the 
modal states by their mode shape 𝝓A  results again in the dynamics of the fluid-structure 
interface 𝑥A , 𝑥̇A , 𝑥̈A. When using a regular approach, the Moving mesh can be applied to 
deform the fluid domain and the CFD block can be used to solve for the new fluid state. 
Although the structure part has been simplified, the computational intensive parts of 
moving the mesh and solving the URANS equations is still present. Also, the FSI coupling 
may require multiple sub-iterations if the coupling between flow and structure is strong, 
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adding to the computational work. We intend to replace the large amount of work of 
solving flow on a deforming domain, by a simplified response model.  

To build the response model, we take the approach sketched in the diagram below. 

 

Figure 37: Reduced order fluid response model FSI framework 

We intend to find response functions to a modal excitation of the fluid-structure interface 
and have the response depend on the modal amplitude, velocity and acceleration. An 
interpretation of these dependencies is that the response to a modal amplitude is how the 
fluid responds when it experiences a change in the interface shape/location: this is 
analogous to the reaction of a spring in a harmonic oscillator. The response of the fluid to 
a modal velocity is analogous to the reaction of a damper in a harmonic oscillator and the 
response of the fluid to a modal acceleration represents the added mass effect that the 
fluid has. The responses to the modes can then be summed up to get a prediction of the 
change of the mean flow properties due to the interaction with the structure. In this 
diagram we still consider the pressure fluctuations to come from e.g. a PFM model, which 
could take into account the changed mean flow conditions and turbulence statistics, but it 
may not be required if the changes in these quantities are small enough such that the main 
characteristics of the turbulence do not change. 

To illustrate the collection of information for the response model, we consider the rod to 
be oriented along the x-axis and that the mode shape only has displacement in y-direction. 
The mode shape will therefore be just a scalar function in x. To build the information 
required for the response model, we impose the kinematics of the interface according to  

𝛿𝑦A(𝑥, 𝑡) = 𝐴.𝜙A(𝑥)𝑔@(𝑡/𝜏) 

where 𝛿𝑦 is the imposed interface displacement in y and 𝑔@ is some function in time and 
𝐴. is a scaling of the amplitude of the imposed displacement. Note that the modal 
amplitude, velocity and acceleration are related to 𝑔@ in this way:  

𝑎(𝑡) = 𝐴.𝑔@ Z
𝑡
𝜏[ , 𝑎̇(𝑡) =

𝐴.
𝜏 𝑔̇@ Z

𝑡
𝜏[ , 𝑎̈(𝑡) =

𝐴.
𝜏+ 𝑔̈@ Z

𝑡
𝜏[		 
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which shows that ratios between amplitude, velocity and acceleration are determined by 
the time scale 𝜏, and the maximum amplitude by 𝐴.. A large time scale presents a more 
pseudo-steady motion, where the amplitude is more dominant than velocity or 
acceleration, and a small time scale represent a very dynamic motion, where the 
acceleration is more dominant.  Then, a simulation is run, starting from the reference 
steady state with the URANS ALE solver (CFD with Moving mesh) using this imposed 
motion. This will provide the full fluid response ∆𝑝̅A(𝑥⃗, 𝑡), ∆𝑢°⃗�A(𝑥⃗, 𝑡), …etc. to a perturbation 
in the kinematics of mode i, e.g.  

∆𝑝̅A(𝑥⃗, 𝑡) = 𝑝̅A(𝑥⃗, 𝑡) − 𝑝̅(𝑥⃗, 0) 

where 𝑝̅(𝑥⃗, 0) is the reference (steady state) solution at t = 0, and 𝑝̅A(𝑥⃗, 𝑡) the sampled 
pressure for a perturbation in mode i. The response of the fluid is “full” in the sense that 
its response, when projected onto a mode shape j, can result in a forcing of that mode. 
Therefore, even though the structure dynamics result in a decoupled system, a coupling 
between modes is reintroduced through the action of the fluid.   

Next, we want to approximate the observed responses with a simplified model based on 
the modal amplitude, velocity and acceleration, i.e. correlate the response to 𝑔@, 𝑔̇@ and 𝑔̈@. 
The prototype model is 

∆𝑝̅A(𝑥, 𝑡) ≈ ∆𝑝̅J,A(𝑥⃗)𝑎̈A(𝑡) + ∆𝑝̅p,A(𝑥⃗)𝑎̇A(𝑡) + ∆𝑝̅M,A(𝑥⃗)𝑎A(𝑡) 

where the subscripts M, D and K refer to pseudo mass, damping and stiffness effects. Since 
the solution fields are sampled using 𝑁t! time steps, the coefficients ∆𝑝̅J,A, ∆𝑝̅p,A  and ∆𝑝̅M,A  
can be obtained from the overdetermined system: 

⎣
⎢
⎢
⎡ 𝑎̈(𝑡5) 𝑎̇(𝑡5)

𝑎̈(𝑡+) 𝑎̇(𝑡+)
𝑎(𝑡5)
𝑎(𝑡+)

⋮ ⋮
𝑎̈a𝑡#/$d 𝑎̇a𝑡#/$d

⋮
𝑎a𝑡#/$d⎦

⎥
⎥
⎤
+
∆𝑝̅J,A(𝑥)
∆𝑝̅p,A(𝑥)
∆𝑝̅M,A(𝑥⃗)

, =

⎣
⎢
⎢
⎡ ∆𝑝̅A(𝑥, 𝑡5)
∆𝑝̅A(𝑥⃗, 𝑡+)

⋮
∆𝑝̅Aa𝑥⃗, 𝑡#/$d⎦

⎥
⎥
⎤
 

Note that for each location 𝑥⃗ (or each cell of the mesh), a least-squares system can be 
defined to determine the local ∆𝑝̅J,A(𝑥⃗), ∆𝑝̅p,A(𝑥⃗) and ∆𝑝̅M,A(𝑥⃗)  

-
〈𝑎̈, 𝑎̈〉 〈𝑎̈, 𝑎̇〉 〈𝑎̈, 𝑎〉
〈𝑎̇, 𝑎̈〉 〈𝑎̇, 𝑎̇〉 〈𝑎̇, 𝑎〉
〈𝑎, 𝑎̈〉 〈𝑎, 𝑎̇〉 〈𝑎, 𝑎〉

. +
∆𝑝̅J,A(𝑥⃗)
∆𝑝̅p,A(𝑥⃗)
∆𝑝̅M,A(𝑥⃗)

, = +
〈𝑎̈, ∆𝑝̅A(𝑥)〉
〈𝑎̇, ∆𝑝̅A(𝑥)〉
〈𝑎, ∆𝑝̅A(𝑥)〉

, 

were the notation <a,b> is used to denote the inner-product of two vectors. Within the 
forced response simulation, this inner product can also be seen as a representation of the 
integral over the time interval of two functions, i.e. 〈𝑎, 𝑏〉 ≈ #/#

@ ∫ 𝑎(𝑡)𝑏(𝑡)𝑑𝑡@
U . Now, with 

specific choices for 𝑔@(𝑡/𝜏), some simplifications can be made:  

1. Desire ∫ 𝑔@(𝑡/𝜏)𝑑𝑡
@
U = 0: this makes the inner product of any constant with 𝑔@ to be 

equal to zero 〈𝑔@, 𝑐〉 = 0 for any constant c. Consequently, the contribution of the 
constant solution 𝑝̅(𝑥⃗, 0) is zero and hence 〈𝑎, ∆𝑝̅A(𝑥)〉 = 〈𝑎, 𝑝̅A(𝑥)〉. 
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2. For a similar reason, require ∫ 𝑔̇@(𝑡/𝜏)𝑑𝑡
@
U = 0, and ∫ 𝑔̈@(𝑡/𝜏)𝑑𝑡

@
U = 0.  

3. Have 𝑔@(0) = 𝑔@(1) = 𝑔̇@(0) = 𝑔̇@(1) = 0: this ensures that 〈𝑎, 𝑎̇〉 = 〈𝑎̇, 𝑎̈〉 = 0.  

4. For scaling purposes, we want the maximum |𝑔@|=1.  

5. For smooth perturbations from the steady state, we require also 𝑔̈@(0) = 𝑔̈@(1) =
𝑔@(0) = 𝑔@(1) = 0  

Without going into much detail, we can obtain such a function as a 9th order polynomial:  

𝑔(𝜉) =>𝑐A𝜉A
n

AL4

 

with 𝑐4 = 1230.1875, 𝑐[ = 7381.125, 𝑐7 = 17222.625, 𝑐6 = 19683, 𝑐u = 11071.6875 and 
𝑐n = 2460.375. Below the resulting 𝑔(𝜉), 𝑔̇(𝜉) and 𝑔̈(𝜉) are shown: 

 

Figure 38: Temporal forcing function 𝐠(𝛏), 𝐠̇(𝛏) and 𝐠̈(𝛏) 

Using the properties of the forcing function, the least squares system that needs to be 
solved for is simplified to:  

+
∆𝑝̅J,A(𝑥⃗)
∆𝑝̅p,A(𝑥)
∆𝑝̅M,A(𝑥⃗)

, = -
〈𝑎̈, 𝑎̈〉 0 〈𝑎̈, 𝑎〉
0 〈𝑎̇, 𝑎̇〉 0

〈𝑎, 𝑎̈〉 0 〈𝑎, 𝑎〉
.

<5

+
〈𝑎̈, 𝑝̅A(𝑥)〉
〈𝑎̇, 𝑝̅A(𝑥)〉
〈𝑎, 𝑝̅A(𝑥)〉

, 

which has the advantage that the inverse can be expressed as  

-
〈𝑎̈, 𝑎̈〉 0 〈𝑎̈, 𝑎〉
0 〈𝑎̇, 𝑎̇〉 0

〈𝑎, 𝑎̈〉 0 〈𝑎, 𝑎〉
.

<5

=
1

𝐴.+𝑁∆!
-
𝑎𝜏4 0 𝑏𝜏+
0 𝑐𝜏+ 0
𝑏𝜏+ 0 𝑑

. 

with a, b, c and d constant values:  

𝑎 = 1.144063107029098 ∙ 10<:
𝑏 = 7.452753954361003 ∙ 10<+
𝑐 =
𝑑 =

4.216689737335880 ∙ 10<+
7.601809033448315 ∙ 10U			
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Therefore, the fluid response coefficients  ∆𝑝̅J,A(𝑥⃗), ∆𝑝̅p,A(𝑥⃗) and ∆𝑝̅M,A(𝑥⃗) can be obtained 
by computing three averaged solution fields during the transient simulation, weighted with 
𝑎, 𝑎̇ and 𝑎̈, and multiplying by the inverse least-squares matrix. It is shown here for the 
pressure field, but all other fluid state variables can be processed in a similar way as well. 
For each (structural) mode that we want to include the response to, an additional 
simulation needs to be run with a forced excitation of that mode and constructing the fluid 
response by determining the averaged solutions when weighted with 𝑎, 𝑎̇ and 𝑎̈. 

A schematic representation of the resulting reduced order response model of the fluid is 
given below: 

 

Figure 39: Reduced order fluid response model 

For any given fluid-structure interface state (𝑥, 𝑥,̇ 𝑥̈), this is projected onto the basis that 
was chosen to construct the response model, which gives the modal states (𝑎A , 𝑎̇A , 𝑎̈A), for 
which the response in the fluid field was obtained from the forced excitation test. The 
contribution of all modal responses is summed up to obtain a resulting fluid state. In 
principle, this model would be usable to replace the moving mesh and CFD part in a coupled 
simulation. Even if the structure properties would change, the fluid model should give a 
proper response, as long as the mode shapes for which the response model was built are 
a good enough basis to represent the modes of the new structure.  

An additional step is to construct the information of the coupled system: a structure system 
represented by M modes, and a fluid response system obtained for those M modes: in that 
situation, the output of the fluid response model is projected again on the structure modes 
to obtain the modal forcing from the fluid to the structure. In this way the coupled problem 
can be written as a new structure model which has the effect of the fluid incorporated into 
added mass, damping and stiffness. 

A direct way to obtain this information is to project the mean fluid response on the fluid-
structure interface (i.e. the tractions acting on the interface from the pressure and wall 
shear stress), immediately onto the structural modes, i.e. when the interface is forced in 
mode i, the modal forcing in mode j is  

𝑓=̅,A(𝑡) =# 𝜙=(𝑥)(−𝑝̅A + 𝜏A̿)𝑛°⃗ 𝑑𝑆
	

s-.
 

Here, 𝑓 ̅denotes the modal forcing from the mean (URANS) flow, to make it distinct from 
the modal forcing contribution that comes from e.g. the turbulent pressure fluctuations 
and that is denoted by 𝑓′. Using the same approach as when constructing the full fluid 
response model, the response 𝑓=̅,A(𝑡) is going to be represented by terms related to the 
displacement, velocity and acceleration of the forced excitation:  
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𝑓=̅,A(𝑡) ≈ 𝑚0=,A𝑎̈A + 𝑑1=,A𝑎̇A + 𝑘2=,A𝑎A  

for which the coefficients 𝑚0=,A, 𝑑1=,A  and 𝑘2=,A  can be obtained from a least-squares fit of the 
data and represent added mass, damping and stiffness. Note that these can have coupling 
from one mode to the other and effectively result in matrices 𝑀3 , 𝐷3  and 𝐾3, which can be 
combined with the decoupled structure dynamics equations 

𝑎̈= + 𝑑=𝑎̇= + 𝜔=+𝑎= =>𝑓=̅,A

J

AL5

+ 𝑓=C 

Or, when writing this in a matrix form  

-
1 	 	
	 ⋱ 	
	 	 1

. 𝒂̈+ -
𝑑5 	 	
	 ⋱ 	
	 	 𝑑J

. 𝒂̇+ +
𝜔5+ 	 	
	 ⋱ 	
	 	 𝜔J+

, 𝒂 = 𝑀3𝒂̈+ 𝐷3𝒂̇+ 𝐾3𝒂+ 𝒇′ 

which gives the vibration dynamics of a rod with the effect of the mean fluid response 
included. The response of this system to a turbulent pressure fluctuation field p’ can be 
analyzed through  

n-
1 	 	
	 ⋱ 	
	 	 1

. −𝑀3r 𝒂̈+ n-
𝑑5 	 	
	 ⋱ 	
	 	 𝑑J

.− 𝐷3r 𝒂̇+ Í+
𝜔5+ 	 	
	 ⋱ 	
	 	 𝜔J+

, − 𝐾3Î𝒂 = 𝒇′ 

Note that when the turbulence statistics are considered independent of the mean flow 
variation, and e.g. a PFM model is used to construct different realizations for the 
turbulence fluctuations, this turbulence forcing can be regarded as an external forcing for 
which the dynamic response of the coupled fluid-structure interaction system can be 
obtained by solving a reduced order system of size MxM (with M the number of modes for 
which the fluid response model was built) 

4.3.3 Fluid response model alternatives 

In this section, two alternatives for constructing the fluid response model are presented. 
One of the assumptions made for allowing simplification is that the vibration amplitudes 
are very small compared to the diameter and length of the rod. Therefore, it is assumed 
that the geometric changes of the surface of the rod when vibrating (i.e. the changes in 
the wall normal) can be modeled by a “transpiration flux”, which forces the flow to follow 
the same curvature as when the mesh would be deformed. This effectively eliminates the 
use of a moving mesh, reducing the computational cost. The other method relies on the 
assumption that the interaction between the flow and the structure is mainly through 
pressure, and that wall shear has a negligible effect. The motivation for that assumption is 
that the wall shear stress is acting in the axial direction mostly and that in this direction the 
displacement of the vibration of the rod is virtually zero (and therefore the work done by 
friction forces is virtually zero). Pressure, on the other hand is, is mostly acting 
perpendicular to the rod’s axis, and therefore acting in the direction of the largest 
displacements (so the work done by pressure is large). To obtain an accurate variation in 
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the pressure, it can be sufficient to use an inviscid model (and/or use slip-wall boundary 
conditions).  

Transpiration flux     

The schematic representation how the transpiration flux replaces the mesh deformation is 
shown below: 

 

Figure 40: Replacing mesh motion by transpiration flux in the FSI framework 

The transpiration flux is incorporated as a wall boundary velocity that adds/removes mass 
through the boundary. The magnitude of the transpiration flux is obtained by assuming 
that the curvature of the streamline when it follows the shape of the deformed structure, 
can be obtained by imposing that the flow direction 𝑈./𝑈1  should be equal to the direction 
of the deformed wall, i.e. 𝜕𝛿./𝜕𝑥.  

 

Figure 41:  Definition of the transpiration flux velocity 𝑼𝒚 

To obtain the transpiration flux velocity 𝑈., it is assumed that the horizontal velocity 
component 𝑈1 ≈ 𝑈a, so that  

𝑈.(𝑥) = 𝑈a
𝜕𝛿.
𝜕𝑥  

Inviscid modeling using a Vortex Particle/Panel Method 

Instead of using the transpiration boundary condition within the (URANS) CFD simulation, 
the fluid model could also be modelled by a potential flow model using e.g. a vortex 
particle/panel method (VPM). This may also give a good prediction of the change in 
pressure on the surface for a deforming structure and can replace the forced modal 
excitation sampling using the URANS solver as explained in the previous section. The flow 
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diagram for the sampling/construction of the fluid response model using a VPM method is 
shown below. 

 

Figure 42: Using transpiration flux and VPM to construct fluid response model 

Note, that the VPM model is capable of predicting the response in pressure and velocity, 
but it does not provide any information about the turbulence/viscous effects. However, 
the turbulence fluctuations can still be predicted from e.g. a pressure fluctuation model 
applied to the RANS solution for the static rods.  

4.4 Implementation into ANSYS CFX 

This section describes the practical implementation of obtaining the flow response to a 
modal excitation.  

The first thing that is required is a chosen basis of modes for which the flow response is 
going to be sampled. This could be obtained from an eigenmode analysis from a structure 
solver, or in principle any other orthogonal basis. However, a basis that is close to the first 
eigenmodes of the structure that is going to be coupled to the flow response model is 
desirable, as these modes are expected to contribute the most to the amplitude of the 
vibration. In the results obtained in this report, the modes are obtained from a Matlab 
script that approximates 

𝑚𝑦̈ + 𝑘
𝜕4𝑦
𝜕𝑥4 = 0 

with clamped conditions at x=0 and x=1: 𝑦(0) = 0, 𝑦C(0) = 0, 𝑦(1) = 0, 𝑦C(1) = 0 using a 
finite difference approach to obtain  

𝑀𝒚̈ + 𝐾𝒚 = 𝟎 

Then, the eigenmodes of the system are found and ordered from smallest eigenvalue to 
largest. The first four eigenvalues that are used to test the methodology are shown in the 
figure below. 
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Figure 43: First four mode shapes 

These mode shapes are then 
added to CFX as a tabulated 
interpolation User Function. 
This provides a continuous 
representation of the modes 
𝜙A(𝑥). Also, the amplitude forcing function 𝑔@(𝑡/𝜏) is added 
as an expression, as well as its derivatives 𝑔̇@(𝑡/𝜏) and 
𝑔̈@(𝑡/𝜏) 

 

 

 

To obtain the fluid response field, “Additional Variables” and expressions 
are defined for each flow variable for which we want to obtain a Δ-
response. As example the expressions and additional variables used for 
computing the ∆𝑝̅J,A(𝑥⃗) field are given (i.e. the response of the mean 
pressure due to the acceleration in mode i). The additional variable 
“Fmode{j}” represent the modal force response 𝑓=̅,A(𝑡), the variables 
{P|U}field{M|D|K} represent the inner-product between the modal 
acceleration (M), velocity (D) and displacement (K) and the pressure (P) 
or velocity (U) field. For “PfieldM”, the dimension is therefore [Pa m s^-
2] and is defined as “Pressure*fd2Adt2*Ay/Tsim^2” (i.e. 𝑝̅A(𝑥)𝑔̈𝐴./𝜏+). 
While running the simulation for the imposed motion, the 
mean of “PfieldM” is computed. This will then represent 
〈𝑎̈, 𝑝̅A(𝑥)〉 = 	 〈𝑎̈, ∆𝑝̅A(𝑥)〉 (for the specific construction of 
𝑔@(𝑡/𝜏) and when averaged over the whole time interval 
𝑡 = [0, 𝜏]). The last step is defining the additional 
variables “d{u|p}{M|D|K}” which represent the fluid 
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modal response in the velocity (u) or pressure (p) field for 
a excitation in the modal acceleration (M), velocity (D) or 
displacement (K). For “dpM”, i.e. representing ∆𝑝̅J,A(𝑥), 
the dimension is [Pa m^-1 s^2], and it is defined by the 
expression “dpMexpr”, which uses the averaged flow field 
information and the (precomputed) inverse components 
of the correlation matrix. 

The simulation that is run is defined by these parameters: the M modes that are included, 
the mode that is excited i, the amplitude of the excitation 𝐴., the simulation time 𝜏 and the 
number of time steps 𝑁t!. For each simulation, we obtain the modal response loads on all 
modes j, i.e. 𝑓=̅,A(𝑡), and the Δ-responses for all selected variables. 

4.5 Results of building fluid ROM 

4.5.1 Fluid response model alternatives 

First the alternatives for obtaining forced response results are investigated for both the 
transpiration flux option and the use of a VPM approach. The rod is deformed in some 
predefined shape (here: 𝛿𝑦A(𝑥, 𝑡) = 𝐴.()(1 − cos 2𝑖𝜋 𝑥) sin𝜔.𝑡). For the results shown in 
this section i = 2.  

 

Figure 44: Comparing transpiration flux vs. mesh motion using no-slip wall condition 

Using the transpiration flux compared to the full mesh motion for the case with no-slip 
wall, shows that the transpiration flux has difficulty representing the same effects as 
encountered with mesh motion by introducing a flux through the boundary. Since the walls 
have a no-slip condition, the assumption that the axial velocity component close to the wall 
can be set equal to the undisturbed inflow velocity may not be valid. As a consequence, the 
prediction of changes in velocity and pressure are not very reliable. However, the effect of 
not having to deform the mesh is also clearly visible as the simulation time reduced from 
240 minutes with mesh motion, to about 145 minutes using transpiration flux. 
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Figure 45: Comparing transpiration flux vs. mesh motion using slip wall condition 

Using the transpiration flux compared to the full mesh motion for the case with slip wall, 
shows that the transpiration flux has almost identical results to the case with mesh motion. 
Both cases show also very similar effects on the wall pressure compared to the case with 
mesh motion and no-slip walls in the previous figure. The fact that no boundary layer needs 
to be resolved close to the rod already reduced the computational time from 240 minutes 
(mesh motion, no-slip walls) to 208 minutes (mesh motion, slip walls) and about halves the 
computational effort to 105 minutes for the case with transpiration flux and slip walls. 
Therefore, when perturbations in wall shear stresses are insignificant to the fluid response 
in pressure loads, using slip-walls and transpiration flux may be a viable, cost-effective 
alternative. 

 

Figure 46: Comparing VPM vs. mesh motion using slip wall condition 

The last alternative considered is using a VPM approach to simulate the fluid response to 
the imposed mode excitation. This method shows, at least qualitatively, very similar 
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patterns in the response compared to slip wall case with mesh motion. The computational 
work is with 8 minutes for a single run significantly faster than the CFD approach. The 
current VPM approach assumes a constant geometrical shape and uses the concept of 
transpiration flux to represent the motion of the rod. In the current implementation, a 
large portion of the work is building the system matrices and the LU-matrix decomposition 
to solve for the panel/particle strengths. Therefore, the building process is relatively 
expensive, taking 5 minutes to setup. The actual simulation of the time steps is only taking 
1 minute, and creating the plots, for which the induced velocity and the pressure fields need 
to be reconstructed takes even longer with 2 minutes.  

4.5.2 Fluid modal response model 

The results shown in this section use the four mode shapes as shown in Figure 43. The 
kinematics of their excitation that is imposed is governed by the amplitude 𝐴. and the time 
duration 𝜏.  

First, a reduced order model is constructed for the modal forcing by determining the 
coefficients 𝑚0=,A, 𝑑1=,A  and 𝑘2=,A  from the modal response force 𝑓=̅,A(𝑡) (note that i represents 
the mode that is imposed and j the mode that is excited by the fluid response). Different 
values of 𝐴. and 𝜏 are taken and it is investigated whether the response model that was 
obtained with one setting, can be used to predict the fluid response for another setting. 
Note that the kinematic function 𝑔@(𝑡/𝜏) in these first results is slightly different than the 
one reported in the methodology section: here the imposed motion is only an S-shape 
curve, of a 5-th order polynomial using the conditions 𝑔@(0) = 𝑔̇@(0) = 𝑔̈@(0) = 𝑔̇@(1) =
𝑔̈@(1) = 0 and 𝑔@(1) = 1. Although it does not satisfy the conditions to obtain the full flow 
field Δ-responses through the methodology described in the previous section, it does allow 
training the ROM for the modal forcing/response.  

 

Figure 47: Constructing modal response ROM and testing on same dataset for forced 
excitation of mode 1 

First the ROM (i.e. 𝑀3 , 𝐷3 and 𝐾3) is constructed by fitting a curve that depends on the modal 
displacement, velocity and acceleration through the measured modal response. The 
constructed ROM is evaluated by plotting it’s interpolated data together with the training 
data: the actual response and ROM results are almost undistinguishable, showing that the 
response can be well-captured in terms of added mass, damping and stiffness effects. As 
can be seen in the figure, for the forced excitation of mode 1, the fluid response and effect 
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on all 4 modes can be seen. For the larger value of 𝜏	(more quasi-steady kinematics), the 
response to mode 1 is strongest, but the fluid response also shows a strong coupling effect 
to mode 3. The smaller 𝜏 means stronger dynamics effects of velocity and in particular 
acceleration and the response to the excitation of mode 1 is very strong in mode 1 as well. 
The question remains how well the ROM would behave when trained for one 𝜏 and applied 
to another one. 

 

Figure 48: Validation of ROM trained for 𝝉 = 𝟎. 𝟑𝟐 and applied to data for 𝝉 = 𝟎. 𝟎𝟎𝟑𝟐 

When the ROM is obtained from the larger 𝜏 value, and applied to predict the response to 
an excitation with the smaller 𝜏 value, more differences between the ROM and the actual 
response can be observed, although the differences are not so large.  

 

Figure 49: Validation of ROM trained for 𝝉 = 𝟎. 𝟎𝟎𝟑𝟐 and applied to data for 𝝉 = 𝟎. 𝟑𝟐 
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When the ROM is trained with data from the smaller 𝜏 value and used to predict the 
response for the larger 𝜏 value, much larger discrepancies can be observed: the training 
data for the smaller 𝜏 is very much dominated by acceleration, especially compared to the 
displacement. This seems to lead to the “added stiffness” effects 𝐾3 not to be presented 
very reliably and therefore the prediction is very much off, when these effects are more 
dominant. Therefore, we could use the data from the two different ROMs, i.e. use 𝐾3 and 𝐷3 
from the ROM trained with more quasi-steady kinematics (a larger value of 𝜏), and use 𝑀3  
from the ROM trained with more dynamic (acceleration dominated) kinematics (a smaller 
value of 𝜏). Using this approach the ROM is performing well for a range of 𝜏 values. 

 

 

Figure 50: Validation of ROM (𝑴3  trained for 𝝉 = 𝟎. 𝟎𝟎𝟑𝟐, 𝑲3  and 𝑫3  trained for 𝝉 = 𝟎. 𝟑𝟐) 
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The fluid response model seems to be well-capable of predicting the modal (coupling) in 
the presence of a vibrating structure. This would allow the ROM to be used together with 
the structural model to predict the coupled (FSI) dynamics of the mean flow. An analysis 
of the coupled system’s response to e.g. turbulence fluctuations can then be conducted at 
a much lower cost compared to running actual coupled CFD-FEM simulations. 

Finally, the pressure response fields for modes i = 1 … 4 are shown in the following figures 
for the response to modal acceleration ∆𝑝̅J,A(𝑥⃗), response to modal velocity ∆𝑝̅p,A(𝑥⃗) and 
response to modal displacement ∆𝑝̅M,A(𝑥). 

 

Figure 51: Pressure response to modal acceleration ∆𝒑�𝑴,𝒊(𝒙°°⃗ ) 

The pressure response due to acceleration ∆𝑝̅J,A(𝑥) can be interpreted as an added mass 
term: the mode shapes are clearly visible in the variation of the pressure. Since mode shape 
1 has negative displacements (see Figure 43), a positive acceleration of the mode, means a 
negative displacement of the rod. This results in an increased pressure on the lower side of 
the rod and a reduced pressure on the upper side of the rod, resulting in an opposing force, 
similar to an inertial force.  

 

Figure 52: Pressure response to modal velocity ∆𝒑�𝑫,𝒊(𝒙°°⃗ ) 
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The pattern of pressure response to modal velocity ∆𝑝̅p,A(𝑥⃗) has a different pattern 
compared to the mode shape. Its largest effects are at the locations where the mode shape 
has its largest gradient. At these locations the rate of change in flow direction is directly 
related to the modal velocity and has the largest added damping contribution.  

 

Figure 53: Pressure response to modal displacement ∆𝒑�𝑲,𝒊(𝒙°°⃗ ) 

Finally, the pressure response due to modal displacement ∆𝑝̅𝑲,A(𝑥⃗) shows a pattern close 
to the mode shape, but with a perturbation at the inlet. This may be due to the boundary 
conditions imposed at the inlet and outlet. The action of the pressure response for the first 
mode seems to suggest that the flow acts as a spring with a negative stiffness: when the 
modal displacement is positive, the rod deflects downwards and the pressure difference 
that is generated is amplifying this downward shift. This may result in a lower apparent 
stiffness of the structure, and with the higher apparent mass, a lower natural frequency 
for which resonance can occur. 

Similar information can be constructed for the fluid response in its velocity field ∆𝑢°⃗�A(𝑥⃗), or 
its turbulence quantities, e.g. ∆𝑘A(𝑥⃗). In a similar way, the fluid response on the side faces 
is known as well, which, for bundle simulations, would be interfaces between fluid 
domains. In a similar manner as finding the fluid response to a rod mode shape excitation, 
one could also define a basis that can represent the deformation of the fluid-fluid interface 
Γ>>, and determine the fluid response for a perturbation in that interface mode. This leads 
to loads on the other interfaces and loads in the rod. Assuming linear perturbations, these 
can be added by superposition to obtain a reduced order model of a bundle system. 

4.6 Conclusions and future work 

A method to construct a reduced order fluid response model was presented. This model 
targets the application in axial flow configurations, in which turbulence induced vibration 
may be taken into account using a-priori LES/DNS simulations or experimental data of the 
spectrum, or alternatively, use a synthetic turbulence generator and pressure fluctuation 
model to obtain relevant pressure fluctuations based on the turbulence statistics obtained 
from e.g. a (U)RANS simulation. The model provides information about the fluid response 
in the whole fluid domain for any desired fluid quantity like pressure or velocity. Using a 
reduced set of modes, the data can be obtained by running a single simulation per mode 
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with forced modal kinematics. Apart from the fluid response field data, the direct action of 
the fluid onto the selected modes can also be determined as modal forcing. These lead to 
a ROM consisting of added mass, damping and stiffness matrices for the fluid of the size of 
the number of modes that is included in the analysis. It is proposed to use kinematics on a 
small time scale to train the ROM for added mass effects and use kinematics on a large time 
scale to train the ROM for added damping and stiffness effects. Preliminary tests show that 
this approach allows the fluid response model built for one set of kinematic coefficients is 
able to accurately predict the response for another set of kinematic coefficients. 

Some additional computational effort may be saved by reducing the complexity of the 
modal excitation simulations. One could think of using slip wall boundary conditions in 
combination with a transpiration flux that would roughly half the simulation time due to 
the absence of the mesh deformation. Pressure responses are qualitatively and 
quantitatively in line with the no-slip wall, mesh deformation simulations.  

For future work the focus will be on the validation of the methodology for a single 
(cantilever) rod case, and a further development of the methodology for bundle 
simulations. 
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Conclusion 

In this work package, fast-running methods are identified that improve computational speed 
for such cases by reducing computational complexity. Each of the methods described in this 
report, aims to reduce the computational complexity by simplifying a specific part of the flow 
induced vibration problem. Two methods target in particular the effect of turbulence and 
turbulence pressure fluctuations: by introducing a synthetic turbulence model, the goal is to 
retrieve turbulence pressure fluctuations to similar accuracy as LES/DNS but at a much lower 
computational cost. Two other approaches use the decomposition of the structure dynamics 
into decoupled modes and rely on the use of these modes to build reduced order models for 
the structure or the fluid response within a coupled FSI simulation. 

In Chapter 1, a new pressure fluctuation model, called AniPFM is described. This model allows 
for the prediction of pressure fluctuations when using a URANS approach, which can be useful 
in particular for turbulence-induced vibration prediction. Several aspects of the AniPFM were 
adjusted with respect to the previous PFM of Kottapalli et al., namely the energy spectrum 
cut-off filter, the replication of anisotropic Reynolds stresses, and the method for time 
correlation. AniPFM was validated for pure flow-only cases, comparing velocity and pressure 
fluctuations statistics with available experimental data. This was done for both a 
Homogeneous Isotropic Box and a Turbulence Channel flow. With satisfactory results found 
when comparing with reference experimental and numerical data, attention was switched to 
a first application to an FIV test case. The test case under consideration is that of a flexible 
brass beam in turbulent water, as performed by Chen & Wambsganss in 1975. Results for 
URANS FSI simulations showed a good match for the natural frequency with the experimental 
one, though an over-prediction in the damping ratio. This latter is in line with what was 
observed previously with the numerical framework used. Next, results for FSI simulations 
involving AniPFM were compared with experimental data and other numerical results. 
Differences in RMS amplitudes of about 30-40% were found, which is a significant 
improvement from the previous PFM. 

Chapter 3 provides a brief description of the approaches used by IPP to calculate coupled 
vibrations in a simplified formulation. To generate turbulent pulsations, the synthetic 
turbulence procedure is used. The proposed procedure is simplified, since it is based on local 
parameters that take into account only the averaged flow history. In this case, the turbulent 
characteristics (correlations of velocity pulsations) are considered as isotropic. Despite 
significant simplifications compared to procedures that consider the transfer of pulsation 
characteristics, preliminary tests showed a good degree of agreement between the 
qualitative picture of the synthetic turbulence generator and the application of the SRS 
method, which is satisfactory for engineering practice. The pulsation component of pressure 
is calculated based on a simple algebraic relationship, where it is assumed that pressure 
pulsation is a dynamic consequence of velocity pulsation. In order to organize more efficient 
calculations, a one-parameter turbulence model of effective kinematic viscosity transfer was 
proposed, which is obtained by combining two k-ε RNG equations. To achieve this, it became 
necessary to express the kinetic energy of turbulence and its dissipation through eddy 
viscosity. These methods are promising fast methods for coupled FSI analysis. 
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Chapter 2 described the theory of the MOR approach, developed by ANSYS, which is based on 
the method of mode-superposition. Further, its implementation for a simplified FIV test case 
was described. The advantages of this method over the FOM follow from a comparative 
analysis. It showed increased efficiency of the ROM method against the original FOM: the wall-
clock time of the fast-running method was approx. a factor of five smaller. The accuracy in 
terms of vibration frequency was perfect, while a small overestimation of the RMS amplitudes 
by the ROM was observed. It can be concluded that ANSYS MOR is a promising fast-running 
method that can provide comparable results to the ones generated with the FOM at a 
significantly lower computational cost.  

In Chapter 4 a method to construct a reduced order fluid response model was presented. The 
model provides information about the fluid response in the whole fluid domain for any desired 
fluid quantity like pressure or velocity. Using a reduced set of modes (obtained from a 
structural mode decomposition), the data can be obtained by running a single simulation per 
mode with forced modal kinematics. Apart from the fluid response field data, the direct 
action of the fluid onto the selected modes can also be determined as modal forcing. These 
lead to a ROM consisting of added mass, damping and stiffness matrices for the fluid of the 
size of the number of modes that is included in the analysis. It is proposed to use kinematics 
on a small time scale to train the ROM for added mass effects and use kinematics on a large 
time scale to train the ROM for added damping and stiffness effects. Preliminary tests show 
that this approach allows the fluid response model built for one set of kinematic coefficients 
is able to accurately predict the response for another set of kinematic coefficients. Some 
additional computational effort may be saved by using slip wall boundary conditions in 
combination with a transpiration flux that would roughly half the simulation time due to the 
absence of the mesh deformation. Pressure responses are qualitatively and quantitatively in 
line with the no-slip wall, mesh deformation simulations.  
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